REVISIONS OF AUSTRALIAN GROUND-HUNTING SPIDERS: 1l. ZOROPSIDAE (LYCOSOIDEA: ARANEAE)

ROBERT J. RAVEN AND KYLIE S. STUMKAT

Abstract

Raven, R.J. \& Stumkat, K.S. 200501 10: Revisions of Australian ground-hunting spiders: II. Zoropsidae (Lycosoidea: Araneac). Memoirs of the Queensland Musenm 50(2): 347-423. Brisbanc. ISSN 0079-8835.

Four new genera (Megateg, K'rukt, Birrana, Kilyana) and 24 new species (Megateg bartholomai, Megateg covacevichae, Megateg elegans, Megateg gigasep, Megateg lesbiae, Megateg paulstumkati, Megateg ramboldi, Megateg spargeon, K'nkt eannoni, Kruks ebbenielseni, K'mks megma, Kruht piligyna, K'rnk vicoopsae, Birrana bulburin, Kilyana bicarinatus, Kilyana campbelli, Kilyana corbeni, Kilyana dougcooki, Kilyana eungella, Kilvana Ltendersoni, Kilyana ingrami, Kilyana krvombir, Kilvana lorne, Kilyana obrieni) are described trom eastern Australia. Along with the Western Australian genus Huntia Gray \& Thompson, 2001 and the New Zealand Uliodon Koch. 1873, shese new genera are placed in the expanded concept of the Zoropsidae, here first formally recorded from Australia. The male Zoropsidac are defined by the combination of dorsal scopula pad on the cymbium, pedal tibiae cracked and strong paired spines on tibiae and metatarsi I and II. The Zoropsidac also include lhe Griswoldiinae which are transferred from the Miturgidae and Zorocratidae . The genera here transferred to the Zoropsidae are found in North America, Africa. Madagascar, Sri Lanka and now Australia and Ncw Zealand; hence, the family is worldwide. The Zoridae have been found to have a grate-shaped tapctum and are hence transferred to the Lycosoidea. Araneomorphae, Lycosoidea, Zoropsidae, faxonomy; Australia.

RobertJ. Raven (e-mail: RobertR@qm.qld.gov.au) and Kylie S. Stunkat, Queensland Museum, PO Box 3300, Soull Brisbane 4101, Australia; 31 March 2004.

Zoropsidae (Fig. 1) resemble Huntsman spiders (Sparassidae) and have not been reported from Australia. The family includes only Zoropsis Simon, 1878 from Europe and North Ameriea (introduced, see Griswold \& Ubiek, 2001), Akamasia Bosselaers, 2002 from Cyprus, and Takeoa Lehtinen, 1967 from Japan (Bosselars, 2002). Simon (1892) admitted Acanhoctenus Keyserling, 1876, Zorocrates Simon, 1888 and Raecins Simon, 1892. Those genera have had a long and eomplex history and passed from the Drassidae (Simon, 1878), elevated to the Zoropsidae (Bertkau, 1882: Simon, 1892), synonymised with the Zoridae (part, Lehtinen, 1967, part), Ctenidac or Miturgidac (part. Lehtinen, 1967 \& Griswold, 1993), some transferred to the Zorocratidae (Griswold et al., 1999, part) and now back to the Zoropsidae (Levy, 1990; Griswold, 1993). Restoration of the Zoropsidae (Levy, 1990) was given phylogenetic support in an analysis of lyeosoid families (Griswold, 1993). The Stiphidiidae has been excluded from the Lyeosoidea (Griswold et al., 1999). Inelusion of the Pseehridae \& Oxyopidae within the Lyeosoidea (Homann, 1971 \& Griswold, 1993) has resisted falsification using partial mitoehondrial 12 S and 16 S ribosomal DNA sequences (Fang et al., 2000); however, the
sample set was limited and yielded little data to contribute further to this study. Griswold (2002) revised Raecins (Zoroeratidae) and Bosselaers (2002) added Akamasia and made a cladistic analysis of the Zoropsidae. Silva (2003) examined higher level relationships of etenoids, including the Zoropsidae, and the preferred eladogram represented dramatic ehanges in family affinities. However, apart from minor transfers of etenids, most of the signifieant higher level ehanges in the eladogram were not implemented.

The transfer of genera from Simon's Zoropsidae to diverse families bears brief explanation. Lehtinen's (1967) transfer of Zoropsis to the Zoridae was spurious, as testified to by his inelusion of the 3-clawed Zoica, later (Lehtinen \& Hippa, 1979) transferred to the Lyeosidae. The relationships of Acanthoctemus and the Zorocratidae, on the other hand, were well supported by Griswold (1993) but the nomenelatural implications aceepted only by Griswold et al. (1999). However, throughout all, the absenee of a explieit coneept of the Miturgidae (ef. Lehtinen, 1967) has been the core of the problem. Hence, it was to that family that the species here deseribed were assigned by Davies $(1976,1977)$.

The quest for miturgid monophyly was partially addressed by the removal of problematical

Australian taxa. Raven et al. (2001) placed the erstwhile miturgid Amauropelma Raven \& Stumkat, 2001 into the Ctenidae and Raven \& Stumkat (2003) separated the Australian miturgid Mitnliodon Raven \& Stumkat, 2003 from the New Zealand zoropsid Uliodon L. Koch, 1873. However, the group was still paraphyletie; unplaeed miturgoids (Davies, 1976, 1977) more elosely resembled Zoropsis than Mitnrga. Unlike Miturga itself, the miturgoids had strong elaw tufts, strong paired spines ventrally on the anterior legs and have little or no leg seopula. Nevertheless, it was elear that the spiders belonged to the Lyeosoidea along with the Miturgidae but not elose to them. Similarly, the Australian Hnntia Gray \& Thompson, 2001 (and Bengalla Gray \& Thompson, 2001) was deseribed and left unplaeed within the Lyeosoidea. Resolution of the affinities of those miturgoids was only possible through a phylogenetie hypothesis using the Miturgidae, Ctenidae, Zoridae, Pisauridae. Lycosidae and the Zoropsidae.

MATERIALS AND METHODS

Methods are similar to those used in Raven \& Stumkat (2003) exeept as follows. Eye deseriptions are made from direetly above or in front and measurements are taken from above. Chelieeral dentition is given as the number of retromarginal teeth and promarginal teeth, e.g., $r=4, p=3$. Wherever possible, it was the left male palp that was drawn and seanned. Seanned material were either eritieal-point or air dried from aleoholpreserved material and then sputter-eoated with gold before examination in an Hitachi S-530 seanning eleetron mieroseope, sometimes using a Robinson (T) baekseatter deteetor. Epigynes were photographed in aleohol and then either eleared in laetic acid and drawn or gold-eoated for examination with the seanning eleetron mieroseope. The four new genera here deseribed are somatieally similar: hence a full generie deseription is given only for Megateg, gen. nov. Charaeters eonsistent for the genus are generally deseribed only there and omitted from speeies deseriptions. Spination. This follows our previous method.

ABBREVIATIONS. ALE, anterior lateral eyes; ALS, anterior lateral spinnerets; AME, anterior median spinnerets; Cons. Pk, Conservation Park; e, embolus; ce, epigynal eleat: 1, paraembolie lamellae; ma, median apophysis; MEQ, mid-eastern Queensland; NEQ, northeast Queensland; NP, National Park: PLE, posterior

FIG. I. Kilyana hendersoni, sp. nov., i, habitus.
lateral eyes; PLS, posterior lateral spinnerets; PMS, posterior median spinnerets; pv, proventral; RCH, retrocoxal hymen; RTA, retrolateral tibial apophysis;rv, retroventral; SEQ, southeast Queensland; SF, State Forest.
lnstitutions. BMNH. Natural History Museum, London: CBB, colleetion B. Baehr: MNHP, Musée National d’Histoire Naturelle, Paris; NHMW, Naturhistorisehes Museum, Wien, Austria; NMSA, Natal Museum, South Afriea; OMD, Otago Museum, Dunedin; QM, Queensland Muscum, Brisbane: WAM, Western Australian Museum, Perth; SAM, South Australian Museum, Adelaide; AMS, Australian Museum, Sydney.

TERMINOLOGY. Basodorsal process, male palpal cymbium (Fig. 23B). In Krukt, the base of the eymbium is basally constrieted into a low ridge or eonieal process.
Epigynal cleats. Raised half-domed ridges posteriorly on the epigyne (Figs 12E, 32C); poekets of Griswold (1993). The function is unelear.
Epigynal pling. Griswold (pers. eomm.) suggested that an epigynal plug may be a useful eharaeter in defining a subgroup within the Lycosoidea. It was reported in the etenid Amanropelma (Raven, Stumkat, \& Gray, 2001) and is here reported in Uliodon, Krukt, Megateg and Kilyana, as well as in an undeseribed Austratian tengellid. Suhm et al. (1996), however, reported the plug, whieh they showed was generated by the bulbus gland in the male palpal bulb, to be in 14 entelcgyne families of Orbieulariae, the dionyeines, Amaurobioidca and Lyeosoidea although they did not eonsider all of its oceurrenees homologous. Paracymbial discontimity or flange, male palp (Fig. I8A). In some male lyeosoids, the
retrolateral margin of the eymbium has a basal groove which extends for part or much of the basal edge. The smooth, uniformly curving rate of the retrolateral cymbium margin is disrupted by a distal widening thought to be the precursor, or the vestige, of a groove. That widening is termed the paracymbial discontinuity or flange.
Epig!nal seape. Median septum of the epigyne which may form an uneut ridge but is not movable as in, for example, the linyphiid Laperonsea or the araneid Erioplora.
NON-AUSTRALIAN MATERIAL.
Clenidae - Acanthoctemms gamjoni Simon, 1906: MNHN: Asthcnoctemas borelli Simon. 1897: MNHN; Cicmus gigas Franganillo. 1931: BMNH; Ctenus malvernesis Petrunkeviteh, 1911: MNHN; Cupiemius sp.: BMNH; Phoneurivia sp.: BMNH: Linlsor sp.: MNHN.
Miturgidac - Zealoctenus cardoensis Forster \& Wilton, 1973 1ype: OMD.
Psechridae - Psechrvs sincnsis Berland \& Berland. 1914, types: MNHN.
Tengellidae - Lamricins hcmiclocinus Simon, 1888: MNHN: Tengella albolincata (F.O.P-Cambridge, 1902): BMNH; Titiotus californicus Simon, 1897: MNHN.
Zoridae - Zora spinimana (Sundevall, 1833) QM.
Zoropsidae (*formerly Miturgidae) - Devcudra seriaths* (Simon, 1898): MF, MNHN; Griswoldia disparile* (Lawrence, 1942): NMSA 4561; Griswoldia punctata* (Lawrence. 1942): NMSA 18782. NM4311, NMSA 14380: Griswoldia rolmsta* (Simon, 1898): MNHN; Grisuoldia urbchscnsis* (Lawrence, 1942): NMSA 3369; Phanotca peringneyi* Simon, 1896: MNHN.
Zoroeratinae - Camptostichomma manicatum Karsch, 1891: MNHN; Udhba dahli Simon, 1903: BMNH; U. madagascuriensis (Vinson. 1863): MNHN; Zorocratcs badius Simon, 1895: MNHN: Z. fiscus Simon, 1888: BMNI; Uliodon albomnnctatus L. Koch, 1873, type F: NHMW: Uliodon convimus L. Koeh. 1873, type F: NHMW; Uliodon frenams (L. Koch, 1873): BMNH, MNHN; Zoropsis media Simon, 1878: BMNH; Z. spinimana (Dufour, 1820): MNHN, CBB.
CLADISTICS. Data. The Hennig86 data set presented by Griswold (1993) were used as the base matrix.
ANALYSES. The analysis of Griswold (1993) was duplicated to ensure a consistent starting point. In those data. five genera were represented by more than one species. However, as we proposed to add a number of genera represented monotypically in the eladogram, the potential (in)stability was of interest. To see how those taxa in Griswold's original matrix would 'behave' when represented monotypically, six taxa (Devendra seriathm, Griswoldia mbensensis, Phanotea sp. 1, Phanotea sp. 2,

Uduba dahli and Zoropsis 'France') were removed and the analysis repeated. Optimally, taxa should be added to trees to make the analysis more 'total'; only one tree resulted from the 26 taxon analysis. It was similar to the initial tree (used by Griswold, 1993) but Campostichomma was widely separated from the other zorocratids as the sister group to Mitnliodon plus the Pisauridae-Lyeosidae elade. The change indieated the instability of the data set when genera were represented monotypically.

The dataset of Griswold (1993) was then manually converted and imported into DELTA 1.04 (Dallwitz et. al., 1998); that allowed easier scoring and checking of characters. (Neither the data set nor manuscript of Silva (2003) were known at that time.) We then used the Nexus Data Editor (Page, 1998) to translate the data from DELTA back to Hennig86 format; however, that resulted in unpredieted data corruption. Instead, we used DELTA 1.04 and the Action Set 'tohen' (translate DELTA into Hennig86 format). The full multispecies original data set was used. Although Griswold et al. (1999) recinded the inclusion of Stiphidion in the Lycosoidea because it was found to belong to another group, it was kept in this data set. To those data, we added species representing several genera: Kilyana hendersoni, sp. nov., Himtia deepensis Gray \& Thompson, 2001. Krukt piligina, sp. nov., Megateg elegans, sp. nov., Birrana bulburin, sp. nov., Amauropelna mueloves Raven \& Stumkat, 200I, Bengalla sp., a new Australian tengellid; Minmga lineata Thorell, 1878, Diaprograpta sp., both in the Miturgidae, and the zorid Argoctemus sp . 'Q4'. Several eharacters were added and some characters used by Griswold (1993, e.g., cribellum, tarsal organ, embolus tip) were modified to accommodate the states in the added taxa, some were deleted (e.g., calamistrum): and in several, the sequence of states (in unordered characters) was changed (for cosmetic reasons).
At the outset, Devendra, Griswoldic, Humiua and Phanotea were listed in the Miturgidae (Platniek, 2003).

The matrix is presented as Appendix 1.
All characters were treated as unordered and equally weighted. Although the use of unordered characters is notionally an acceptance of the Principle of Indifference (Wilkinson, 1992), most eharaeters used here could not be ordered although some are easily polarised.

NONA 2.0 (Goloboff, 1997) was used through Winclada 1.00.08 (Nixon, 2002) with the settings mult*I000, with 1000 replications and 25 starting
trees per replications. Non-homoplasious synapomorphies are represented by black squares and homoplasious synapomorphies by black dots.

CHARACTERS. (Thosc without comment are unchanged from Griswold, 1993).

0 . Male tibial crack: 0 , absent; I, present. A fine crack appears on the leg tibiac of male lycosoids (Fig. 22F). It is very close to the base, often a ventral or lateral spinc occurs on its distal side. The crack is evident with a dissecting microscope but is often more readily seen on the retrolateral side. Griswold (1991) identifed this character in the Lyeosoidea. Griswold (1993) found the tibial crack to be so homoplasious in the cladogram and aecepted that to constrain it to a single apomorply would have resulted in 7 extra stcps.

1. Cymbium dorsally with dense scopulate patch: 0 , absent or not dense scopula; I, present. This character has been moditied to refer only to a dense ovoid arca of scopula forming a more of less flattencd outer surface. It is presumbably what Bosselaers (2002) termed a bristle pad but it is not bristles (see Fig. 33E.F). A number of taxa have moditicd hairs on the cymbium including Argoctemus and Psechridae. The hairs on the upper legs in lycosoids are densely grouped. thickencd and brush-like for part of their length and bluntly tipped. However, hairs dorsally on the cymbium of the psechrids (Fecenia and Psechrus) are bristle-like and not forming a flattened outer pad. Hence, the lycosoid eymbial pad is considered another synapomorphy of the group excluding Zorocrates, Devendra, and Campostichomma and with a sccondary loss in one species of Griswoldia (G. robusta).
2. Apical cymbium: 0 , elongate or clearly eonical; I, truncate or little longer than bulb. Despite figuring a wide diversity of cymbial shapes. Griswold (1993) coded very fcw. Our research indicates that the cymbium is not only rich in eharacters but that the characters are highly consistent and hence informative. Taxa described all have a deep (in dorsoventral planc) cymbium with some nodification of the tip. In Zoropsis (Levy, 1990), Krukt and Megateg, the cymbium is dcep, apically truncate and indented. In Killana, it is apically coniform but wisted (Fig. 41A). In Megateg (Fig. 9A) and Zoropsis (Levy. 1990), the nargin is broadly rounded and to a greater or lesser extent the cymbium prolaterally cxtends below the bulb. The plesiomorphic condition is considered that found in Tengella in which the apical cymbium is long and conical.
3. Male abdominal shield: 0 , absent; 1 , present. In all four genera here described. Zoropsis, and the New Zcaland Uliodon, a pair of transverse slit-like "sigilla" are evident on the anterior face of the abdomen just above the pedicel (Fig. 3A.B). They are present in both males and females but are more evident in males as they are the foci of an oval biconcave scute or sclerotisation. It is associated with 4 large paired sigilla dorsally on the abdomen. The charaeter is absent in the miturgids, Miturga, Minuliodon tarantulina (L. Koch), Diaprograpta, and all known Australian Corimnidae. Clubionidae. Cycloctenidac, Pisauridac, Clenidae, and Zoridac. A similar condition is here reported in Argyroneto (Cybacidae) and the philodromid Thanatus formicimus (Clerck, 1757). In these genera, four sigilla are evident in the semicircle dorsal of the pedicel: however, the 'sigilla' are small and oval but males have no associated selcrutisation. Both males and females (CBB) of Coelotes incrmis (L. Koch. 1855) have small rectangular sigilla in a similar position but the surrounding area is not selerotised and is not sexually dimorphie. On dissection of Megateg, no muscles were
evident internally at that point and hence the term 'sigilla' is incorrect. The shield'scutc appears simply to have two eye-like sockets.
However, an additional feature is associated with the sigilla in male zoropsids. The sigilloid scars are present in both males and fomales but only in males is there sufficient selerotisation to be deened a scutc. This sclerotisation is considered autapomorphic and on the suggestion of Griswold (in litt.) is termed a shield.
Dorsal sigilla are the attachancme sites of dorso-ventral muscles passing vertically through the abdomen. They occur in most spiders but are not universal (Marples, 1968). They are plesiomorphically present and large in mygalomorphs and Mcsothelae (Millot, 1933, 1936), and lyypochiloids (Marples. 196 S). None of the sigilla identified by Millot or Marples have musele attachments on the abdomen wall so low and close to the pedicel as hare noted. Millot $(1933,1936)$ and Marples (1968) showed only an infracardiac ligancnt attaehing to the posterior wall of the heart at a position near that of the centre of the anterior abdominal plates.
In most spiders. the dorsal sigilla are often not readily evident and are hence quite small. Marples (1968) noted that, in arancomorphs, the number of dorso-ventral muscles varies from 4 pairs to none. Also, dorso-ventral muscles are not always lost in the same sequence. The distinction here is that the sigilloid scars are cnlarged and quite evident and in that state they are also evident anteriorly on the abdomen.
4. Male palpal tibia with retrolateral apophysis: θ, present; I, absent (Psechrus \& Lycosidae). Subdorsal tibial apophysis (Fig. 34D). The presence of a retrolateral tibial apophysis (RTA) on the palp of malcs took on special significance when Coddington \& Levi (1991) drew attention to it following Griswold (1990) and elaborated by Griswold (1993). However, distinction was not made in the position of the tibial apophysis. Clearly, the dorsal apophysis of the Nicodamidae (Harvey, 1995) presents even a mere definitional problem: a dorsal retrolateral tibial apophysis. In most groups with a tibial apophysis, the basc of the apophysis is clearly evident and lateral when viewed ventrally, However, in a number of other groups, notably Zoropsis, the Ncw Zcaland Uliodon, and some species of genera described here, the tibial apophysis is commonly set so high on the tibia that from ventral view the base is not evident. That condition is considered significant but not here fully surveycd.
5. Male palpal tibia with retroapical cuticle unsclerotised: 0 , absent: 1, present (Trechaleidae).
6. Malc palpal tibia with ventral apophysis in addition to retrolateral: 0. absent: 1. present in Uduba, Campostichomma. Raccins, Zorodictina, Australian tengellid, Bengalla, Stiphidion.
7. Cymbial dorsobasal projection: 0 , absent: I, present in Zorodicyna, Huntia. Krukt. Ctenus. Initially, this character appears quite informative bur within the Australian zoropsids here revised it is present only in Ǩrukt and absent in its unequivocal sister genus, Megoteg.
8. Subtegulum/tegulum interlocking lobes: 0 , present; 1 , absent. Tegular-subtegular interlocking lobes were first reported (Griswold, 1993) in the Lycosoidea. In Alegateg elegans and M. hartholomai, prolaterally the subtegulum has small basal lobe which sits inside the basal extension of the embolus (Fig, 3C,D) and is here presuined to qualify at least functionally as an interloeking lobe. However. Plataick (1999) noted that some species of the liocranid Agroeca Westring have a form of the lobe also involving part of the embolus but being much more anterior than in lycosoids we considered it was not homologous.
9. Scparate tegular conductor: 0 , present; 1, absent in Krukt. Megateg, Birrana. Kilyuna, Uduba and Trechalea. Griswold (1993) considered a conductor was absent if 'No part of the palpal bulb serves to guide or protect [the] embolus". Bosseluers (2002), on the other hand. considered that a hyaline or sclerotised appendage, immovably attached to the tegulum and facing the embolus tip is considered to be a "conductor". Apart from embolar support being provided hy the groove formed by the ventral cymbial tip, conduction for the embolus in genera here revised is (presumahly) provided from two different sources. In Megateg ramboldi and M. elegans, a long tegular grooved process (albeit shallow) arises from the base of the embolus but extends well past the embolus tip. These appear as tegular lobes and only doubtfully serve any guiding function for the embolus. Equally, in Kilyana hendersoni, a long fimbriate paraembolic guide arises from the base of the embolus and parallets it only for the basal half but the embolus is very long and conduction at the tip seems only possible by the eymbial groove. The second kind of conduction lies in the grooved distal ridge of the mediun apophysis of Kibana ingrami (Fig. 49C,D). Here, we take the concept implicit in Griswold and adapted by Bosselaers. In the Australian zoropsids, save for Huntia, a tegular process (but not the median apophysis) arising near the embolus tip and serving a conduction function is absent. That transfer of the conduction function is considered a synapomorplyy of the Australian zoropsids, save for Homia. Characters coding the different kinds of conductor used by Griswold are not used here as the establishment of homology is assumption rich. That problem also arises in the coding of the median apophysis which is nonetheless accepted here.
10. Median apophysis: 0, present; \boldsymbol{t}, absent only in Psechuts, Stiphidion, Uliodnn.
11. Median apophysis, position on tegulum: 0. median, inscrtion ncar middle of icgulum; 1 , retrobasal, insertion near proximal margin of tegulum only in two Phanoted species and Amauropelma.
12. Median apophysis, shape; 0 , convex, club- or hookshaped, narrow, convex on all surfices or with concavities forming only narrow grooves; t, cup-shaped, prolateral surface a deep oval concavity that is closed distally, retrolateral surface arched, convex (Devendra, Campossichonma, Raccine, Himtia. Griswoldia, Phanotea and the three ctenid gencra).
13. Concave Median apophysis: 0, simple (Devendra, Campostichomma. Raccins, Acanthoctemus, Amauropelma); I, bimarginate, concavity with inner and outer rims, these separated at apex of apophysis (Huntia. Grisuoldia, Phanoter, Phonentria. Ctenus).
14. Convex Median tapophysis: 0 , hooked or bent distally; 1 , large, swollen, with 2 apical lobes, bilobate (Trechalea, Rhoicims, Aiturgu, Diaprograpta); 2, triangular in cross section. simple (Uduba, Bengalla, Lycosidae).
15. Ilooked Mledian apophysis: 0, simple; 1. bifid (Zoropsis. Kibuma, Megateg, Kinkt, Birmma, Mithrga, Diaprograpta).
16. Median apophysis, angle: 0 , longitudinal; 1, transverse (Udubus. Lycosidae).
17. Tegulum; 0 , oval (most genera): 1. bifid, divided into separate proapical and retroapical processes (Uduba); 2, notched probasally so that subtegulum is visible in ventral view (Trechateidac, Mimurga. Lycosidac).
18. Distal tcgular process (DTP): 0, absent: 1, present (Lycosidae, Pisauridae, Trechaleidae).
19. Tegular lobe or process (sclerotised tegular projection, STP) arising near embolus base: 0 , absent; 1 , present (Fecenia, Zorocrates, Raecins, Birrana, Megateg, Pisaura, Ctenns, Miturga).
20. Paracmbolic vane or Iamina, i.e. median membranous region of tegulum (between base of median apophysis and embolus): 0. simple, convex; f, with vane (projection, MTP) arising near embolus base (Takeoa, Zoropsis, Birrana, Kruks, Megateg. Uliodon. Zorodictyna). In Megateg, typically, there are four membranous laminae on the bulb, three are universal. one is present in all but one species. In addition, consistently present distally on the embolus is a lamina which is also found in Zoropsis Imea (Thorell, 1875) (but not in Z. media Simon or Z. mifipes (Lucas)) that Levy (1990) named a translucent embolic lamina (see Fig. 19A,B). Griswold (1995) reported the character (no. 6 in his analysis) in three species of Phanotea (P. catata. P. xhosa, P. digitata) as one of the synapomorphies of the group. In Afegateg, it extends back from the embolus tip folds basally and then makes a small semicircular lamina dorsally, i.e., between the embolus and cymhium. The sceond is a large rounded wing-like lamina extending almost completely for the retrobasal edge of the median apophysis and sometimes curling ventrally around the median apophysis. Such a lamina has not been previously noted in the Lycosoidea (MTP of Griswold, 1993). The third is a large lamina arising entally adjacent to the base of the embolus and extending distally between the embolus and median apophysis; it varies in shape from a broad rounded wing to almost a triangular spike. It is the memhranous tegular process (P) of Levy (1990). Griswold (1993) also reponted it Zorodictyna and Takeoa. The fourth, almost global, lamina is small, rounded and triangular and arises entally of the base of the median apophysis. It is similar in size. shape and position to the P of Levy (1990). Of the Australian zoropsids, only Huntis Gray \& Thompson, 2001 has a conductor in the sense of a lamina that arises from the tegulum near the embolus tip. In that at least Huntia is allied to Devendro and Zorodicyna. A conductor is present in New Zealand Uliodon but it lacks a sclerotised median apophysis.
21. Embolus basc: 0 . fixed, with selcrotised attachment to main body of tegulum; 1 , flexibly attached to tegulum by membranous cuticle (Mituhiodon. Diaprograpta, Bengalla, Lycosidac, Pisauridac. Trechalcidac, UduBa, Kilyana, Ilumia).
22. Embolus arising from basal lobe (EL): 0, absent, with embolus origin gradually tapering from tegular surface; 1 , present with embolus base bulbous or lobate. whether or not firmly or flexibly attached to tegulum (Mituliodon, Biturga. Diaprograpta, Argoctenus. Bengalla, Lycosidae, Pisaunidac, Trechalcidac. Uduba, Kilyuna. Zorocrates, Canpostichomma).
23. Basal lobe of embolus with process (ELP): 0, present, with lobe or protuberance; 1 , absent, basal Iobe smoothly curved (Mitulioton, Miturga, Sassipus, Bengalla, A goctemus).
24. Embolus, direction of curve (left bulb, ventral view): 0 . clockwise; 1, counter-clockwise (Lycosidac. Pisauridac. Trechaleidae, U(hha).
25. Embolus: 0, stout, tapering to apex, convex or flattened (Tengella, Devendra, Raecins, Zorodict)ma, Huntia, Antauopelma, Griswoldia, Phoneuria, Anstrotengella, Uhodon); 1. slender. curved spine (most genera); 2, broad. concave, apex divided into dorsal (ED) and ventral (EV) lobes (Takeoa, Phanotea (part), Ctemis); 3, a broad thin flange (Zoropsis (part), Phanotea (part); 4, thin spine and apical recurved in keel (Megateg, some Zoronsis).
26. Epigync, configuration: 0 , clearly divided hy longitudinal cpigynal fold (EPF) into median sector (MS) and paired lateral lobes (LL); 1, MS and LL fused, not divided longitudinally into 3 parts.
27. Lateral lobes, shape: 0 , convex, unmodified; I, concavity or pocket; 2 , tooth.
28. Lateral lobes teeth, kind: 0 , short, median (Ctenidac): I, long median (some Phanotea); 2, on posterior margin (Rhoicinus).
29. Median sector (MS) of epigynum: 0 . median lobe (ML); swollen with a lobe or protuberance; I, unmodified, that or gently convex.
30. Median lobe (form. convex MS): 0. scape. projecting ventrad with abrupt posterior margin: I, a swollen lobe extending to posterior margin (Ctenidae): 2, median longitudinal swellings.
31. ML scape (kind): $\boldsymbol{\theta}$. simple, broadly attached anteriorly (Tengella): I. an erectile scape, narrowly attached anteriorly (Zoropsis).
32. Posterior divot or fossa on scape: 0 . present: I, absen.
33. Shape of copulatory duct (CD): 0 , short, broad, length less than vulva (Zorodictina): I, longer than or equal to vulva; 2, very long, Iength greater than vulva and looped back on itself (Uduba).
34. Inner margin of epigynal groove (EG): 0 . absent: not apparent on dorsal surface of epigynal plate; I. inner bulge separate trom vulva: 2. broad bulge, leading to copulatory duct (CD): 3, narrow, approximately parallel to copulatory duct extending posteriorly to near fertilisation duct (FD).
35. Head of spermatheea (that part with pores): 0, snall. narrow, smaller than BS (Minuliodon); I, large spherical, larger than BS; 2, absent, no porose arca (Uduba).
36. Base of spermatheca chambered (BS, area just before FD, internal structure): 0 , simple, spherical or tubular; I. chambered.
37. Base of spermatheca with pronounced lobe (BS, external shape): 0 , simple (Ruecius): I, pronounced lobe; 2, long, sinuate (Mituliodon).
38. Fertilisation duet (FD, position): 0 , posterior, I. median.
39. Postcrior eye row shape: 0, nearly straight. OAL:OQL less than 1.2; I, recurved, OAL:OQL more than 1.2.
40. ALE and PME in line: 0 , no: 1 , yes (Ctenidae).
41. PLE behind PME, ratio of PER to OQP less than 1.6 (Lycosidae): 0, no; I. yes.
42. ALE relative to AME: 0 , about same size: 1 , clearly smaller; 2, clearly bigger. Large lateral eyes (Fig. 5). In most groups with recurved eye rows the smaller eyes are either the laterals (e.g., Ctenidae, Cycloctenidae, Zoridae) and/or the front row (e.g., Lycosidae, Pisauridac), or all eyes are of a similar size (c.g., Mituryidac, Sparassidac). In the Zoropsidace, the synapomorphic and common condition (all Australian zoropsid genera here included, except Kilyana where it is variable) is that the anterior lateral cyes (at least) are clearly larger than the anterior mediān eyes. The direetion the eyes "look does not seem. as initially thought, to convey alditional information.
43. Tapetun: 0 , canoe-shaped: 1. grate-shaped: 2, diffuse, blotely. Although the character is taken from Griswold (1993), we were unable to confirm that Stiphidion has a grate-shaped tapetum. On the other hand, we did note that, contrary to Homann (1971) at least one zorid genus Argoctenus does have a grate-shaped tapctum.
44. Ratio of male tibia I to carapace width: O, less than 2.7: 1 , more than 3.
45. Tarsus. dorsal trichobotlria. rows: 0.2 or 3 irregular rows; $I, 1$ row.
46. Dense claw tufts ohscuring pretarsus: 0 , absent: I, present. Claw tufts. Here taken to be clusters of finely fimbriate hairs with broadly rounded or flared tips arising from a separate pad (see Raven, 1986, 1994) eetally beside each claw (Figs 22A-E, 40A,B). The hairs usually enlarge distally. Hence, the extended scopula of, for cxample. Miturga lineata Thorell, do not qualify.
47. Diamond-shaped hair cluster below tufts (Fig. 40): 0 , absent; I, present. In Zoropsinae, below the claw tufts, an additional cluster of highly fimhriate hairs oceurs in a triangular area on the distal ventral tarsi centred around the apex of the tarsus. The hairs are optieally darker and apically taper to smooth clongate filaments (Figs 22C, $40 \mathrm{D})$. The wider distribution of these filamentous scopuliform hairs is not known.
48. Claws on leg 1, number: 0.3:1,2. In at lcast one genus (considered to be a tengellid), the number of claws on the first and fourth legs differ. The more apomorphic condition (2 claws) is present on leg 1 and the plesiomorphic condition (3 claws) is present on the leg IV. So we have modified the character from Griswold (1993) to reflect the more apomorphic state. Raven (1985) discussed anterior-posterior leg differences in the Mygalomorphac.
49. Scopula on leg 1: 0 . absent: I, present.
50. Tarsal organ, form: 0 , aperture simple, oval to round; I, keyhole-shaped: 2, stellate, margin forming several inward-pointing lobes; 3, a long elcvated rod with apical aperture. Tarsal rod (Figs 3F, 38B). A tarsal rod set at about $40-50^{\circ}$ is present trom about the nid-point of the pedal tarsi to just basal of the mid-point in Megoteg. Krukt and Birrana. In some cases, the rod is present only on one tarsus (e.g., 111) but is presumably broken offon other legs as its presence is indicated by a large, ovoid, pallid region which is the base. The rod is set at about $70-80^{\circ}$ to the cuticle and under hydraulic control. The rod is not present on the palpal tarsi of either males or females nor is a tarsal organ also evident. Unlike Amanmopelmu (see Raven, Stumkat \& Gray, 2001), the tarsal rod or organ of zoropsids is the same relative position on all leg tarsi. In Kinkt and Megateg, the rod is very long with the aperture on the undersurface of the tip and at the hase of a spine-like apex (Fig. 3F), whereas in Birrana (Fig. 38B) it is much shorter with the aperture terminally on truncated tip.
51. Trichobothrial base. texture of hood: 0 , transverscly striate; I, with fine longitudinal striations to smooth.
Spination. Both Griswold (1993) and Bosselaers (2002) used spination of both males and females to a different extent in their data sets. Our approach has been to identify spines in unusual positions or configurations. Griswold (1993) seored the number of spine pairs ventrally on tibae I. II. Bosselaers (2002) divided that into the seores for males and females and added a number of charaeters based on spines. continuing the separation of males and females without noting the almost complete correlation. Neither author noted the signilicance of the robustness of the tibial spines but only the number of pairs. Henee, four pairs of weak spines appear no different in their data matrices to the strong spines seen here (Fig. 34C). Equally, the spines of Megateg (and others) are on decidely mised bases; the eondition is most evident in fenales but weaker in inales. The stronger paired spines are more ollen found in hunting spiders but can be found in groups (e.g., Clubiona, pers. obs.) which are otherwise only weakly spined. Signifieant among those strong spines is the proventral femoral spine (character 52). However, more common in the hunting spiders is the reduetion, often to total absence, in dorsal and lateral spines on tibiae I, II in females. Henee, the presence of spines in these positions may yet prove quite infornative. Equally, as we here lound, males of females with redueed spines themselves may have a higher dorsal and lateral spine complement on legs I, I1 and as such may
represent the plesiomorphic condition of the higher group (sec Raven, 1985, on biserial dentition of male Baryehelidae).

In all four new genera herein. tibiae and metatarsi I and II have strong paired spines ventrolaterally (Fig. 34C). On the tibiae, the spines are in 4 pairs from the base to subdistal and all also have an additional unpaired distal spine proventrally. The metatarsi consistently have 3 pairs of strong spincs. In Uliodon, the spination is the same but the extra anterodistal spine is absent on the tibiae.

All four Australian zoropsid genera described here show similiar patterns of leg spination and useful common features can be seen. Females: a strong proventral spine on femoral (eharaeter 52); as well as prolaterally, dorsally and retrolaterally; spines only retrolaterally on patellae III. IV; spination of legs I and II (Fig. 34C) varies only on femora with only ventral paired spines on tibiae (pv5rv4) and metatarsi (v2.2.2). In males, spines are also present prolaterally and retrolaterally on tibiae and metatarsi I and II and one retrolateral spine occurs on all patellae.
Proximobasal ventral tibial spinc. Paired ventral spines on tibia I, Il typically do not occupy the full length of the tibia. In the Australian Zoropsidae, the spine complement lacks the distal pair and the most basal pair are set on the tibia basal of the area defined by the dorsal extent of patella (Figs 33A, 34B). The most basal spine ventrally on the tibia is inside that area also in Zorppsis spinimana, the miturgid 'Olo'gracilis, the New Zealand Uliodon, as well as in new genera here deseribed and in Zora spinimana.

As part of our as yet unpublished work on Australian cursorial spider families we found, in most Australian miturgids, the spination on tibiae $I, I I$ is 3 weak pairs ventrally. In some, up to 4 spines may occur in a transverse line basally. Only 2 pairs of weak spines are present ventrally on the metatarsi. The same is true is the Australian 7orids with two exceptions: on tibiae I, II, in Elassoctemus, from 5-7 pairs of spines and in Hestimodema only 2 pairs of spines may be present. However, in all cases, in zorids and miturgids only two pairs of spines are present on metatarsi I, II (see Raven et al., 2002). Hence. the condition used here and also reported by Bosselaers (2002) of the metatarsi I, 11 having 3-5 strong paired spines is unusual and considered a synapomorphy within the higher in-group.
52. Femur 1 with proventral spines : 0, absent in Tengella. Psechridae, Lycosidae. Pisauridac. Miturgidae s.strict., Cienidae exeept Amauropelma, Stiphidion, Senocuhs. Tapillinus. Zoridae; 1 , widely present in higher in-group but also present in the zorid genus Ifestimodema.the amaurohiid Durdurus. On the lower half of femur I, basally and prolaterally, is a distinct enlarged spine in the distal fifth. A prolateral spine is also present above it (Fig. 33D): the proventral spine is distal to it and in a line sentral to that. In Megateg, Krukt, Zoropsis, Uliodon and Killuma, the spine is present only on fenmur I. In females, the spine is noticcably enlarged and on a low mound, even more so than the strong paired spines ventrally on tibia 1 , 11. That condition is also present in Griswoldia,
53. Female tibia I, lateral spines: 0 , present; I, absent. Within the higher in-group, present only in Takeoa. Zoropsis. Inutia and Phanotea peringueyensis.
54. Spines on tibial I. female, on raised bases (Fig. 34C): 0 , absent; \boldsymbol{I}, present through much of the higher in-group but not in Plumotea, at Icast. The distinetion of this character is that the paired ventral spines in females are large and on raised bases. In oher groups with numerous paired spines on the tibia (c,g., Zoridac), the spine bases are like other spines whereas in the in-group, the spine bases are enlarged.
55. Pairs of ventral spines on libia 1 of both sexes: 0,$4 ; 1,4$ with extra anteroventral just behind apical pair; 2, 5; 3, 7 or more; A. 3; 5. 6 pairs.
56. Melatarsi I. II. no. of ventral spine pairs: 0.2 or weak; 1.3 or more, strong.
57. Male tibia I, dorsal spines: 0, absent: 1, 1; 2,2 or more. Different stanes often oceur within the same family.
58. Female tibia 1. dorsal spines: 0 . absent; I, present only in Dolomedes. Pisanra, Senocuhus and Tapillime.
59. Male metatarsus I or 11, lateroapical pairs of spines: 0 . absent; 1 . present.
60. Nursery web: 0, no; 1 . yes only in Dolomedes, Pisamra.
61. Egg sac earried on spinnerets: 0 , no: I, yes in Lycosidac.
62. Retrocoxal lyymen : 0, present; l, absent only in Senoculus, Dolomedes, Pisaura and Tapillims.
63. Fenale with dorsal spigots on PMS (Fig. 3E) : 0 , absent: I, present. In araneomorph spiders, spigots are present apically on the posterior median spinnerets in females. In some genera, notably the four here deseribed. Zoropsis, and the New Zealand Uliodon, us well as an undescribed Australian 'tengellid': Campostichonuma and Griswoldia, the spigots form two lines along the dorsal surface (Figs 3E, $21 \mathrm{C}, 39 \mathrm{C}, 42 \mathrm{E})$ similar to that in female Centrothelinae (Lamponidac. Platnick, 2000) but the spigots in the zoropsids are not so enlarged. The character is present in some species (e.g. M. elegans, M, covacevichae) of all genera described here but is not without homoplasy, It is also present in the sparianthine sparassid Thelcticopis mphisternis Strand, 1911 (pers. obs., RJR) but absent in Neosparassus salacius (L. Koch). The character is absent in the miturgids, Miturga. Mituliodon tarammina (L. Koch). Diaprograpaa, and all known Australian Corinnidae, Clubionidac, Cyeloesenidac. Pisauridac, Ctenidae and Zoridac.
Associated with the dorsal spigots on the PMS are the spinnerets being set on a raised buse. The condition is diagnostic of the sparassid subfamily Sparianthidinae (Simon, 1897). In alcohol, the spinnerets of these Australian zoropsids are often spread apart but almost invariably they can be readily seen to be on a raised common base (Fig. 32E). The condition is present in males and females herein deseribed; however, a very wide survey has not been conducted. Their presence in the Sparianthidinac should be taken to test the hypothesis of non-relationship as al leasi Thelcricopis also has a cymbial scopula.
64. Cribellum colulus: 0 , cribellum present; 1 , wide tleshy colulus: 2 , colulus narrow.
65. Trochanter notehes: 0 , deep; 1 . broad, very shallow: 2, absent. Two deseriptors are used: the relative width to depth Which is greater on legs I, II than on III, IV (i.c. noteh is shallower); the symmetry of the noteh which ean be lop-sided (decper on trailing edge. Fig. $3 \ddagger$ A) on legs 1 , II.

RESULTS

Ten equally parsimonious trees were found (and shown with unsupported nodes collapsed): length 295, consistency index 0.30 ; retention index 0.66 . The fast optimisation setting in

FIG. 2. Cladogram of Zoropsidac and other lycosoids. Non-homoplasious changes are marked with a black rectangle; homoplasious changes optimised towards tree's root are marked with a black circle.

Winelada was taken and a nelsen consensus tree produced (length 330, consistency index 0.27; retention index 0.60 . (PAUP*4 was also used with the same resulting trees.)

In the consensus tree here found, within the 'higher lycosoids' (Griswold, 1993, fig. 87), Psechridae, Stiphididae, Senoculidae, Oxyopidae together form a clade, as do Pisauridae, Trechaleidae plus Lycosidae. The Miturgidae (sensu Raven \& Stumkat, 2003) and Zoridae vary in position but remain basal. The higher etenids, Phonentria and Ctems, form a clade but the basal etenid, Amauropelma, groups lower on the eladogram. Consistently, Zorocratidae form a clade and the Australian and New Zealand zoropsids form a clade with Takeoa and Zoropsis.
In stark contrast, Silva (2003)'s preferred tree showed Tengella remote from the other tengellids and sister genus of Zorocrates supported only by two highly homoplasious characters (oval PLE and "loss" of the male tibial crack). Despite substantial support for controversial groupings (e.g., Eutichirinae remote from the Miturgidae as currently placed but elustering with the Clubionidae), Silva (2003) placed no significance on these groups and restrieted her taxonomic ehanges to the Ctenidae which indeed was the proclaimed focus of the paper. (Many were characters elcarly chosen because they were taken to be signifieant with the Ctenidae but had implications in her "outgroup" taxa.) Notwithstanding the fate that eharacters used by Silva (2003) \& Griswold (1993) overlap only by around 25%, that Silva (2003) included 6 families not used by Griswold (1993) and reduced the number of representative taxa in the Zoropsidae, Zorocratidae and Griswoldiinae, it is hardly surprising that a radically different placement of the many groups resulted. As we noted above, the simple reduction of genera represented by multiple species in the data set of Griswold (1993) to single species representation resulted in the polyphyly of the Zorocratidae. Different data scts produce different cladograms even if one is inelusive within the other.
Further integration of Silva's (2003) characters into those used here is not possible because most states were not well doeumented or illustrated and in some cases were incorrectly coded, e.g. number of tarsal claws (eharacter 110) does not allow for the different states on legs I and IV noted in character 111 .
Choice of Trees. Of the 10 trees, 8 were strongly pectinated with single species or genera repetitively plaeed as the sister group of many
taxa; the other two trees showed sister groups of similar sizes. Of those two, only one, the preferred tree, shows Devendra as monophyletic and at least the etenids Amauropelma, Ctemis and Phonentria as monophyletic. That preferred tree (Fig. 2) also shows the Zorocratidae (sensu Griswold, 1993, based on the most parsimonious tree with 'nelsen' consensus) as monophyletic and the Miturgidae plus Zoridae are newly seen as monophyletic. The Miturgidae still group with the 'higher' lycosoids and remain remote from Phanotea, Devendra, Griswoldia.
Signifieant differences between this eladogram and that of Griswold (1993) are that the Zoroeratidae are now part of the zoropsoid complex and within the Lycosoidea. This eladogram shows that the Zoropsinae, Zoroeratinae and Griswoldiinae are monophyletic and the sister group is the Ctenidae. Of minor difference, the relationships between zorocratid genera are preserved save that Zorodictyna and Raccins are not sister groups.

CONCLUSIONS

The Zoropsidae are now expanded substantially and considered to include three subfamilies: Zoropsinae, Zoroeratinae and Griswoldiinae, the latter two are new placements. The characters upon which the group is based are the tibial erack in males (\#0, with presumed reversals in Takeoa, Uliodon and Zorocrates), anterior abdominal shield in males ($\# 3$, with a presumed reversal in Phanotea), the truneate apical cymbium (\#2, with presumed reversals in Griswoldia and Zorodictyna), and the ALE being relatively larger than the AME (\#42). The position of Acanthoctemms is contentious as only one charaeter was used that would unite it with other etenids, the etenoid eye condition. We propose that a eladogram that includes more etenid taxa would unite A camhoctemms with them and not as the sister group of the zoropsoids. Henee, Acanthoctemus is maintained in the Ctenidae. Two characters found in Acanthoctemus are shared with the Zoropsidae - scopula on the dorsal eymbium of males (\#1) and spigots dorsally in rows on the PMS of females (\#63).

The cladogram supports the transfer of the Zoridae to the Lycosoidea, indieated by the presence of a grate-shaped tapetum. Also, the Miturgidac are the sister group of the Zoridae and shown to be more elosely related to lycosids and pisaurids than the Zoropsidae and Ctenidae.

SYSTEMATICS

Family ZOROPSIDAE BERTKAU, 1882

Zoropsididae [sie.] Bertkau. 1882: 337.
Uliodoninae Lehtinen, 1967: 316. Synonymised by Raven \& Stumkat (2003).
DIAGNOSIS. Male Zoropsidae differ from those of Miturgidae in the dense scopula dorsally on male palpal cymbium, pedal tibia with basal fracture, 4-5 pairs of strong spines on raised bases on tibiae I, II and a selerotised plate on the anterior abdomen. Most female zoropsids have spigots dorsally on the posterior median spinnerets but all have strongly paired spines on raised bases on tibiae and metatarsi 1, 11. Other characters used in the diagnostic deseription are more equivocal.
Males with dense scopula dorsally on male palpal eymbium, pedal tibia with basal erack, exeept Takeoa; tibial apophysis, if present, more dorsal than retrolateral; eyes in two recurved rows: 2-3 claws; claw tufts present or absent. Cribellum present or absent. Spigots present dorsally on PMS of females; apical PLS short, domed. Femur I, especially of females, with enlarged spine proventrally; 4 pairs of strong spines ventrally on tibia and 3 pairs on metatarsi I, II. Troehanters weakly but distinctly notehed. Labium wider than long or as long as wide.

SUBFAMILIES.

Zoropsinae.

Akanasia Bosselaers, 2002 (Cyprus): Birrana gen. nov. (Qid): Huntia Gray \& Thompson, 2001 (WA and Vic); Kilyana gen. nov. (Qld, NSW); Krukt gen. nov. (N Qld); Megateg gen. nov. (N Qld): Takeoa Lchtinen, 1967 (Japan); Uliodon L. Koch, 1873 (New Zealand): Zoropsis Simon, 1878 (Holarctic, introduced to North America).
Zorocratinae.
Campostichomma Karsch, 1891 (Sri Lanka); Raecius Simon. 1892 (equatorial Africa): Uduba Simon, 1880 (Madagascar): Zorocrates Simon, 1888 (USA, Mexico. Central America); Zorodictyna Strand, 1907 (Madagascar).
Griswoldiinae.
Devendra Lchtinen, 1967 (Sri Lanka); Griswoldia Dippenaar-Schoeman \& Jocqué, 1997 (South Africa): Phanotea Simon, 1896 (South Africa).
RELATIONSHIPS OF AUSTRALIAN ZOROPSIDS. All 4 new genera deseribed here share the combination of 2 recurved eye rows with lateral eyes the largest, a broad carapace, (distinet \& strong) claw tufts, 2 claws, strong paired spines on tibiac and metatarsi I, II, legs I \& II laterigrade, tibial apophysis more dorsal than retrolateral on the male palp, and a dense scopula dorsally on the eymbium. All have a form of
tegular-subtegular interlocking lobes on the male palp. They also share two other characters of significance. The spinnerets are on a raised conieal base, similar to but not quite so pronounced as in the sparassid Sparianthidinae. Second, males have a sclerotised seute with a paired depression on the front surface of the abdomen. The depression in males is generated by transverse anterior sigilla also present in females. Females also have spigots in two lines along the dorsal surface of the PMS.

Megateg and Krukt share a long tarsal rod and leg scopula weak or absent. Megateg has long male palpal tibia, extensive basal tegulum, short distal embolus, no basodorsal process on cymbium, and the epigyne is a flat plate with eonvergent grooves around a low ridge and often with basolateral 'cleats'. The embolus is short and simple, varying from a narrow spike to a grooved sheath; however, apically it reflexes baek strongly and continues along the leading edge of embolic lamina. The median apophysis is always mobile and a scooped retrolateral plate with a small apieal hook. The tegulum is consistently dominant and basal and the sperm duct smoothly follows the outer edge from the retrodistal origin to the embolus. The eymbium is always apically truncate with an extensive dorsal scopula. A distinet retrobasal diseontinuity is present in some speeies. The tibial apophysis is simple, often large and retrolateral to dorsal.

Of the two genera in southern Queensland and northern New South Wales, Kilyana lacks a tarsal rod (but a scopula is present but weak in females and stronger in males) whereas Birrant has a tarsal rod.

KEY TO GENERA OF AUSTRALIAN ZOROPSIDAE

1. Males (males of Huntia murrindal Cray \& Thompson, 2001 unknown) . 2 Females. 6
2. Tarsal rod present (Fig. 3F) 3 Tarsal rodabsent . 5
3. Palpal tibiamueh longer than wide (Figs 6, 12D) Megateg Palpal tibia little or lardly longer than wide (Figs 25A, 37A).

4. Tegulum small, reırolateral (Fig. 23A) Krukt Tegulumlarge, basal (lig. 36A) Birrana
5. Two elaws and claw tufts (Fig. 40A) Kilyana Three claws and tufts absent Ifuntia deepensis
6. Two claws and elaw tufts (Fig. 40A) 7 Three elaws and tufts absent Huntia murrindal
7. Tarsal rod present (Fig. 3E) 7 Tarsal rod absent Kilyana
8. Tarsal rod short (Fig. 38B) Birrana

> Tarsal rod long (Fig. 3F)
> . 9
> 9. Epigyne with lateral cleats weak or absent (Figs 11B): single simple receplaculum (c.g., Fig. 14B)
> Megateg. pan
> Epigyne with distinct lateral cleats (Fig. 12G): receptaculum variable .
> . 10
> 10. Epigyne with narrow hirsute seape-like septum (Fig. 23D). Kruktpiligına Epigynal scape absent or nol natrow and hirsute . . . 11
> 11. Epigyne very flat, 2-dimensional; lateral cleals low (Fig. 12E. 14A. 19C). Megateg, part Epigyne strongly raised with strong deep lateral cleats (Figs 26D, 29D, 32C) postcro-laterally . . . Krikt. part

Huntia Gray \& Thompson, 2001
Huntia Gray \& Thompson, 2001: 164.
TYPE SPECIES: Huntia decpensis Gray \& Thompson, 2001.

DIAGNOSIS. Tibial eraek present. Third elaw reduced; claw tufts absent. Palpal conductor present. Tarsal organ short, distal or central rod.
INCLUDED SPECIES. H. deepensis Gray \& Thompson, 2001; H. murrindal Gray \& Thompson, 2001.
REMARKS. The female of Huntia murvindal Gray \& Thompson, 2001 differs from that of H. deepensis by its tarsal rod. However, the male is unknown and using this key would key to Megateg. If the diagnostic conduetor in the male of H. deepensis is consistent in H. murrindal that eharaeter would distinguish the two genera.
DISTRIBUTION. WA and Vietoria (Fig. 20).

Megateg gen. nov.

TYPE SPECIES: Megateg ramboldi, sp. nov.
ETYMOLOGY. An abitary combination of letters; the gender is female.
DIAGNOSIS. Megateg differs from Zoropsis in the absence of a eribellum and having both anterior and posterior median eyes smaller than their respeetive lateral eyes. Males of Megateg are readily distinguished from those of Krukt in the long palpal tibia and the basally extensive tegulum and the flared apex of the embolus; females differ in that the epigyne is low with paired lateral grooves whereas females of Krukt have an elevated seape or septum medially. It differs from Miturga in the combination of two recurved eye rows, a broad carapaec, distinet and strong true claw tufts, a crack basally on the pedal tibiae of males, a retrodorsal rather than retrolateral tibial apophysis on the palp, a dense seopula dorsally on the eymbium and a long
tarsal rod. The synapomorphy of Megateg is the combination of the long tarsal rod and the flared apical tip of the embolus back into which the sperm duet recurves.

DESCRIPTION. Carapace: broadly pear-shaped; lateral profile gently curved from posterior margin to just anterior to fovea and gently curved down to short vertical elypeus. Carapace outline like Heteropoda (Sparassidae); caput delincation indistinet save for pigmented Y ; other striae indicated only by short black setae. Pilosity: uniform cover of short fine brown hairs; long bristles along elypeal edge; shorter black bristles in radial strial lines. Fovea short, deep, longitudinal with triangular dark zone anteriorly; fovea starts just behind widest earapace. Margins not rebordered. Colour yellow brown with brown radial marks with 3 pallid ovoid areas on margin. Hair types simple, not feathery. Eye region not forming a black mask. Eyes: 8 in two elearly recurved rows; median eyes elearly smaller than laterals. AME on common tuberele set forward of clypeus; eyes look forward and to side at about 45°; about 1.2 diameters apart. ALE inset, on low tuberele, look forward and to side; with short eurving ridge eetally, elose to AME. MOQ a long quadrangle, wider behind than in front. PME small, pallid, subeircular, raised, and look up; about 2 diameters apart. PLE on low tuberele, look baek and to side; ea. 3 diameters from PME. Front row straight; clypeus $=$ ea. $2 \times$ AME diameter. Group oceupies 0.5-0.68 of headwidth (front width: back width: length, ca. 3: 4: 2). Tapetum grate-shaped in Megateg ramboldi.
Chelicerae: short, large with distinet boss. Dentition: $p=2-4, r=3-4$. Fang without processes, long, transverse: strong teeth near fang base; no enlarged fang setae. In males, chelicerae smaller but with relatively longer groove. Labillm: slightly longer than wide, anteromedially domed, basally constricted with marginal teeth; not rebordered and without other grooves; uniformly but lightly hirsute. Maxillae: about twiee length of labium, basally narrowly truncate, anteriorly enlarged, medially laterally constrieted. Short, indistinct seopula on rounded anterior ental edge; serrula short, slightly eurved. Sterimm: broad, flat, subcircular, not extending between eoxae IV ; intereoxal selerites at $111 / \mathrm{IV}$. Uniformly hirsute. Pedicel unselcrotised.
Legs: I \& II laterigrade. Coxae similar; preeoxal selerites larger anteriorly than posteriorly, distinet on all eoxae. Femora 1, II elearly thicker than III, IV; less so or not in males. Trochanters
with shallow asymmetrical notehes on II-IV (e.g., Fig. 34A), I not notched. Retrocoxal hymen on coxal ovoid, subcentral, similar in males and females. Scopula absent or weak on metatarsi \& tarsi I, II of males and females. Tarsi in males and females short ($\mathrm{I}=0.4$ of metatarsus length), not flexible, cylindrical for length. Female palpal tarsi apically conical but arched in lateral view. No single clongate setae distally on patellae and tibiae of legs. Leg hairs simple. Males with relatively longer legs; trochanters like female. Spines: females with very long, strong proventral spine on femora I (e.g., Fig. 33D); four pairs of strong spines on raised bascs overlapping ventrally on tibiac I, II (e.g., Fig. 34C); 3 strong pairs ventrally on metatarsi I, II, with basal two pairs very long with short distal pair; no spines laterally on tibiae I, 11, retrolateral femora I. II, patellae 1-II, or on leg tarsi. Spines present dorsally laterally and ventrally on tibiae III, IV and laterally and ventrally on metatarsi III, IV; distal whorl short on metatarsi III, IV. Preening combs absent. Males: with many long ereet hairs on tibiae to tarsi. Spines on I, II like female but more slender and shorter; patcllae I, II with retrolateral spines; tibiae I, II also with dorsal and lateral spines: metatarsi I. II also with lateral spines. Tibial crack in males orthogonal to long axis (e.g., Fig. 22F), most basal ventral tibial spine pair proximal of crack. Trichobothria: in two irregular rows or bands for length of tibiac; very long hairs on metatarsi and tarsi in band along dorsal surface; base with 3-5 transverse ridges (c.g. Fig. 38B). Tarsal organ: an elongate rod with apical aperture (Fig. 3F), set in large soft ovoid base at basal $1 / 3-2 / 5$ of tarsus. Claw tufts (Fig. 22A-E): small, dense, cluster on ental side of claws; tufts shorter than claws. Two claws each with one moderately long and I-2 smaller teeth basally; claws not obscured by hairs. Metatarsi with unilobate membrane distally. Female palpal claw without tuft; $c a$. five moderately long tceth; palpal patella with decp narrow distal invagination for distal $5 / 6$ in females, distal $1 / 3$ in males.
Abdomen: dorsally brown with darker brown foliate pattern: scutes absent but males with large shallow pair of depressions in sclerotised shicld on anterior facc (e.g., Fig. 3A): pilosity as for earapace; venter pallid. Tracheal spiracle indistinct. near spinnerets. Spinnerets (Fig. 17A-F): broad, triangular to wide rectangular, hirsute colulus. In females, spinnerets on raised base similar to Sparianthinae. ALS short, broad, truncate, coniform, apical segment distally
reniform with two large spigots entally, 2-3 smaller spigots medially and a ficld of 30-40 smaller spigots. PLS of similar length but ca. 0.5 diamcter of ALS, apical cone short, domed with 1-2 large spigots apically. In females, PMS short, triangular in lateral view with two rows of spigots along true dorsal surfacc (e.g., Fig. 3E); in males, bases of ALS separated and PMS are simple eylinders but with 3 large spigots apically.
Epigyne: with median septum and lateral cleats basally or cleats absent; a longitudinal copulatory fossa leads direetly to small simple spermatheeac postcriorly.
Male Palp: tibia longer than wide with glabrous ventral concavity for distal third; tibial apophysis is retrodorsal (base is not visible from ventral view, Fig. I0D), simple, with predistal dark sclerotised zonc and without unsclerotised areas or laminas, and process is not socketed. Cymbium deep, partially encloses bulb laterally; dense distal scopula (e.g., Fig. 33C) oval for 2/3 length; no basidorsal process; cymbium distally indented; with retrobasal dorsal coneavity with deep U-shaped invagination presumably to receive probasal dorsal tibial scleritc. Bulb with large basal trilobate tegulum for basal $1 / 3-1 / 2$; median apophysis short, hooked seoop retrolaterally; conductor absent; distal embolus short, hooked, prodistally with distal flared apex with translucent dorsal wing. Median apophysis and embolus bases widely separated and each free; embolus extends back as long scythe-like hook; subtegulum large with subtle notch (interlocking lobe, Fig. 3C,D) against tegulum.
DISTRIBUTION AND HABITAT. From rainforest between the Bloomfield River, north of Cairns, to Hinchinbrook Island in the south; only in northeastern Queensland.
INCLUDED SPECIES. M. bartholomai, sp. nov.; M. covacevichae, sp. nov.: M. elegans, sp. nov.; M. gigasep, sp. nov.; M. lesbiae, sp. nov.; M. paulstumkati, sp. nov.: M. ramboldi, sp. nov.; M. spurgeon, sp. nov.

RELATIONSHIPS. As with other groups found in rainforests of the Wet Tropics World Heritage Area of Queensland, c.g. the zodariid Tropasteron (Bachr, 2003), interrelations of species of both Megateg, gen. nov. and Krukt, gen. nov., within the region resist full elucidation. Males of all Megateg specics for which they are known have the palpal tibia bowed or straight (M. elegans). Of the former group, males of M. bartholomai and M. spurgeon share a very large
tibial apophysis; in other species, it is small. In M. ramboldi, M. covacevichae and M. pallstmmkati, the submarginal palpal lamina is large that is taken to be the synapomorphy of the group. Lateral epigynal cleats arc found in females of M. spurgeon, M. ramboldi, and M1. elegans but sinee they are also found in the sister genus Kirkt, gen. nov., their presence in Megateg is considered plesiomorphie. Males of M. lesbiae and M. gigasep are unknown and hence those species are considered to form a basal polytomy with M. elegans. Hence, the eladogram of Megateg is:
(M. lesbiae-M. elegans-M. gigasep) ((M. covacevichaeM. ramboldi-M. panlstumkati)(M. bartholomaiM.spurgeon))).

BIOGEOGRAPHY. Most spccies oceur in montane rainforests of the Wet Tropics World Heritage Area and most arc endemic to adjacent forests. However, M. elegans is widespread from Cape Tribulation south to about Ravenshoe but with disjunet outliers just south at Walter Hill Range. It also appears to be the lowland complement, if not sister species, of the mountain top M. romboldi. The simple vulva of M. lesbiae (known only from females) unequivocally assoeiates the species with Megateg and shares with the Walter Hill Range material of M. clegans the most southerly known extent of the genus.

In most localities, only one specics of Megateg is present. However, the Mi Spurgeon area ineludes three species M. bartholomai, M. spurgeou and M. panlstumkati, of which only the latter is endemic to Mt Spurgeon which must be considered a centre of diversity,

KEY TO SPECIES OF MEGATEG

Males (males of Megateg lesbiae and M. gigasep unknown)

1. Tibial apophysis large, heavy (Figs 6D, 9D) 2 Tibial apophysis slender, tapers distally (Fig. 6A,C) . . 3
2. Embolus with strong basal thorn (Fig. 913)

Embolus without basal thorn (Figs 18B, 19A)
M. spurgcon
3. Palpal tibia cylindrical, clearly not bowed(Fig. 6A.B) . 4 Palpal tibia clearly bowed laterally (Fig. 6C,E) 5
4. Embolus apically a long slender spike (Fig, 12A,B): palpal tibia with retrobasal eluster of long thiek blunt bristles (Fig. 611)
M. elegans

Embolus apically wider or truneate (Fig. 7A); palpal tibia basally withont eluster of thiek blunt bristles (Fig. 6A)
M. ramboldi
5. Palpal tibia longer (Fig. 6C); median apophysis distally broad with apical lamina (Fig. 10B). . M. covaccvichae Palpal tibia shorter (Fig. 6E); median apophysis tapers to slender hook; vane is basal (Fig. 1513) . M. paulstumkati

Females

1. Median scape very broad with sinuous lateral ridges posteriorly (Fig. 13A,B) M. gigascp
Median scape not broad or no sinuous ridges posteriorly . 2
2. Lateral eleats on epigyne present (Fig. 12E), sometimes indistinct (Fig. 14A).
. 5
Lateral cleats elearly absent (Figs 9F, 16A) 3
3. Large blaek epigyne with medial groove widely separating lateral lobes (Fig. 9F) M. bartholomai
Epigyne pallid, lateral grooves elose or eonvergent . . 4
4. Epigynal ridges join or form U-shape posteriorly (Fig. 11B).
M. covacevichae

Epigyne, lateral grooves form biconcave lens (Fig. 16A) M. paulsumkati
5. Paramedian groove on epigyne distinet (Fig. 10C) . . . 6 Paramedian groove on epigyne absent or transverse and indistinet (Fig. 14A) .
M. lesbiac
6. Paramedian grooves distinctly converge posteriorly (Fig. 19C).
M. spurgeon

Paramedian grooves flask-like. widest medially or predistally (Figs 8A, 12E). 7
7. Median septum with long anterior neek (Fig. 12E)
M. clegans

Median septum bulbuous with shorter anterior neek (Fig. 8A)
M. ramboldi

Megateg ramboldi sp. nov.

(Figs 3A,B,D, 4, 5E, 6A,B, 7-8; Table I)
ETYMOLOGY. For Dr Gerhard Rambold, University of Bayreuth.
MATERIAL. HOLOTYPE. ס。 Bellenden Ker Ra, Summit TV Stn, $17^{\circ} 16^{\prime} \mathrm{S} 145^{\circ} 51^{\circ} \mathrm{E}$, NEQLD, rainforest, pitfall, 1-30 Apr 1982. S.Montague, QM S31174. PARATYPES. Bellenden Ker Ra, sieved litter: Centre Peak Summit, $17^{\circ} 16^{\circ} \mathrm{S} 145^{\circ} 51^{\circ} \mathrm{E}, 1560 \mathrm{~m}: 4$ 여, $10-12$ Apr 1979. G. Montcith, QM S31175 (allotype), S27866-8; 1 J. 2 ㅇ. 28 Oct 1983, GMonteith, D. Yeates, G Thompson, QM S32952, S31184; 6 아․․ 29 Apr-2 May 1983. G.Montcith, D. Yeates, QM S31183, S31180, S27859, S31181: 2 \& \&, 1-7 Nov 1981, Earthwatch Qld Museum, QM S27857:1ㅇ, same data but 17-24Oct 1981, QM S27865; 1 d. 8 Oct 1991, GMonteith, H.Janetrki, D.Cook, QM S31182; 3 웅, Cable Tower 3, 17-24 Oct 1981, Earthwatch Qld Museum, QM S26231; 1 2, same data but summit, 25 Oct- 7 Nov 1981, QM S26230. Mt Bartle-Frere, Earthwatch Qld Muscum expedition: 1 \&, NW-centre Peak ridge, $17^{\circ} 23^{\circ} \mathrm{S} 145^{\circ} 48^{\circ} \mathrm{E}, 7-8$ Nov 1981 , QM S39532: 2 여, 0.5 km north ol'South Peak, $17^{\circ} 24^{\prime} \mathrm{S}$ $145^{\circ} 49^{\circ}$ E, sieved litter, 6-8 Nov 1981, QM S $39533+10^{\circ}$, Sth Peak Summit, 6-8 Nov 1981, QM S39534. All in rainforest in NEQld.

DIAGNOSIS. Differs from M. clegans in males lacking a retrobasal setal cluster on the eylindrical palpal tibia and females have a medial pair of smoothly biconvex ridges forming the septum whereas in M. elegans, the distal quarter of the septum quiekly widens.

FIG. 3. Megateg ramboldi, sp. nov., A-D, o, anterior faee of abdomen showing selerotised shield, eneireled (A). C, D, ó palpal bulb with interloeking lobe encireled. E, Ḱrukt piligyna, sp. nov., \uparrow, posterior median spinnerets, dorsal view. F, Megateg elegans, sp. nov., \& tarsus l, tarsal rod, lateral view.

FIG. 4. Megateg, distribution map, showing drainage basin ridges.

DESCRIPTION. Holotype ô. Carapaee 5.08 long, 4.20 wide. Abdomen 4.04, 3.16 wide. Total length, 9.2.
Eves: AME:ALE:PME:PLE, II:14:10:12. Eye group front width: back width: length, 65:90:42. Interspaces: AME-AME, 0.9; AME-ALE, 0.4; PME-PME, 1.8; PME-PLE, 1.1.
Chelicerae: $\mathrm{p}=3, \mathrm{r}=3$.
Spiues: I: fe pv1p2d4r3; parl; tip3d2r3v2.2.2.2; me v2.2.2. II: fe pvip3d3r4; parl; ti p3d2r3v2.2.2.2; mep2r2v2.2.2. III: fep4d4r4; pa rl ; ti p 2 d 2 r 3 v 2.2 .2 ; me p 4 r 4 v 2.2 .2 . IV: fe p4d3r3; parl; ti p2d2r2v2.2.2; me p4r3v7. Palp: fe pld2.
Legs: scopula absent; tibial fracture on 1, II prolaterally distinet, grooved retrolaterally, not evident retrolaterally on III, IV. Trochanteral notehes shallow, deeper in back of noteh than front.
Palp: tibia eylindrical, longer than wide; 8-10 long setae on retrobasal comer, cluster of long hairs below tibial apophysis but morc retrobasally and glabrous around it, prolaterally of that; with ventral, low, distal collar and higher prodorsal collar. Tibial apophysis a small dorsal (base not evident viewed ventrally), sinuous,
blunt blade; from ventral, brush obseures apophysis but face of blade parallel to eye: from side, knife-like with basal enlargement. Cymbium: scopula extends along sloping surface; basodorsal process absent; paracymbial discontinuity absent but much eymbium evident wide of bulb. Bulb: median apophysis scooped

TABLE 1. Leg measurements of Megateg ramboldi, holotype male and allotype female.

Male	1	11	111	1 V	Palp
Femur	5.08	4.54	3.85	4.54	2.46
Patella	1.92	1.92	1.08	1.54	1.08
Tibia	5.08	4.15	2.69	4.08	1.08
Metatarsus	5.69	4.31	3.38	4.92	1.08
Tarsus	1.69	1.54	1.31	1.85	
Total	19.46	16.46	12.31	16.93	5.70
Female	1	11	111	1 V	Palp
Femur	3.46	3.31	2.85	3.69	1.54
Patella	1.92	1.85	1.54	1.54	1.00
Tibia	2.92	2.69	1.85	2.85	1.08
Metatarsus	2.46	2.31	1.85	3.61	1.15
Tarsus	1.00	1.00	1.00	1.15	
Total	11.76	11.16	9.09	12.84	4.77

FIG. 5. Megateg, eephalothorax and abdomen, dorsal view. A, M. elegans, sp. nov., ס. B, M. covacevichae, sp. nov., ठ. C, M. paulstumkati, sp. nov., ठ. D, M. lesbiae, sp. nov., ?. E, M. ramboldi, sp, nov., i.
with simple eetal hook with basal hyaline lamella; base regular, ereseentic, sinall. Embolus short, wide, hooked with hyaline extension distally. Small, hyaline. Ieaf-shaped proeess plus small triangular process between base of embolus and median apophysis.

Allotype \bigcirc QMS31175. Carapace 5.84 long, 4.64 wide. Abdomen 5.84, 4.44 wide. Total length, 12.
Eyes: AME:ALE:PME:PLE, 10:13:9:I2. Eye group front width: back width: length, 77:110:44. Interspaces: AME-AME, 1.8: AME-ALE, 1.2; PME-PME, 3.1; PME-PLE, 1.6.

Chelicerae: as for male.
Spines: I: fe pvl strong, pld2rl; pa 0; ti v2.2.2.2: me v2.2.2. I1: fe p3d3rI; pa 0; ti v2.2.2.2. me v2.2.2. 11I: fe p3d3r2; pa 0; ti p2d2r2v2.2; me p4r5v2.2.2.1V: fe p3d3rl; parl; ti p2d2r2v5; me p4r4v7. Palp: fe p1d2; pa 0; ti p2; ta p3.

Legs: scopula on tarsi 1, II weak. Paired elaws with 2-3 teeth. Tarsal rod at basal $1 / 3$ of tarsi.

Epigyne: a pair of sinuous lateral hoods; long, narrow, median septum, reniform when viewed axially from front (Fig. 8B).

DISTRIBUTION AND HABITAT. High altitude ($>700 \mathrm{~m}$) rainforest at Bellenden Ker Range and Mt Bartle Frere, NE Qld.

Megateg lartholomai sp. nov.
(Figs 4, 9; Table 2)
ETYMOLOGY, For Dr Alan Bartholomai, Director, of the Queensland Muscum from 1969 to 1999.
MATERIAL. HOLOTYPE. δ. Upper Cow $\mathrm{Ck}, 1.5 \mathrm{~km}$ NE of Mt Spurgeon, $16^{\circ} 26^{\circ} \mathrm{S} 145^{\circ} 13^{\circ} \mathrm{E}$, NEQLD, 15-2 Oct 1991, GMonteith, H.Janctzki, D.Cook, L.Roberts, QM S31109. PARATYPES: Allotypc, 9 , as for holotype, QM S31110. $1 \delta^{\circ}$, as for holotype. QM S31111:4 $0^{\circ} \delta^{\circ}$, Mossman Bluff Track, $5-10 \mathrm{~km}$ W Mossman, Site 8, $16^{\circ} 28^{\circ}$ S $145^{\circ} 22^{\prime}$ E, flight imtercept trap, 1-17 Jan 1989 . GMontcith, GThompson ANZSES Expedition, QM S31145, S3 1152; I 0°, same data but 20 Dec 1989-15 Jan 1990, QM Si6548; $28^{\circ} 0^{\circ}$, same data but $16^{\circ} 25^{\prime} \mathrm{S}$ $145^{\circ} 20^{\circ}$ E, 20-24 Dec 1989, QM S31147, 31151; 1 ठ same data but Site $7,16^{\circ} 28^{\circ} \mathrm{S} 145^{\circ} 22^{\circ} \mathrm{E}, 16-30 \mathrm{Dec} 1988^{\circ}$. QM S31150; 1 \&, same data but site $10,16^{\circ} 39^{\circ} \mathrm{S}$ $145^{\circ} 34^{\circ} \mathrm{E}$, flight trap. 17-31 Dec 1988, QM S31133; 2 ㅇㅇㅇ. Mt Demi, summit, $16^{\circ} 30^{\circ} \mathrm{S} 145^{\circ} 19^{\circ}$ E. pitfall, 17 Dcc 1995-25 Jan 1996. G Monteith, GThompson, Ford, QM S41358; 13°, Mt Levis, $16^{\circ} 35^{\circ}$ S $145^{\circ} 17^{\circ}$ E, sieved litter. 12Oct 1980, G. Monteith. QM S31143: 19 . Mt Lewis Rd, 22 km from highway (Site 3), $16^{\circ} 35^{\circ} \mathrm{S} 145^{\circ} 17^{\circ} \mathrm{E}$, piffall, 18 Dec 1989-13 Jan 1990, G.Monteith, G.Thompson. ANZSES Expedition. QM S31192; 2 ㅇ․ Mt Lewis, $2.5 \mathrm{~km} \mathrm{~N}, 16^{\circ} 34^{\circ} \mathrm{S} 145^{\circ} 16^{\circ} \mathrm{E}$, sieved litter, 3 Nov 1983. D. Yeates, GThompson, QM S31191; 1 of, Mt Lewis, $5.5 \mathrm{~km} \mathrm{~N}, 16^{\circ} 34^{\prime} \mathrm{S} 145^{\circ} 16^{\prime} \mathrm{E}$, sieved liter, 8 Sep 1981 , GMonteith, D.Cook, QM S31153: $4 \delta^{\circ} \delta^{\circ}$, Mt Spurgeon, 2 k SE, $16^{\circ} 27^{\prime} \mathrm{S} 145^{\circ} 12^{\prime} \mathrm{E}$, NEQLD, 20 Dec $1988-4$ Jan 1989. GMonteith. GThompson, ANZSES Expedition, QM S31146, S31156, S31144; 1 §. Pauls Luck, Carbine Tableland, $16^{\circ} 27^{\prime} \mathrm{S} 145^{\circ} 16^{\circ} \mathrm{E}$, pitfall, 28-30 Nov 1990, GMonteith, H.Janctzki, D.Cook, QM S31154; 1 i,

FIG. 6. Megateg, of palpal tibia, left. A, B. M. ramboldi, sp. nov., dorsal (A) and ventral (B) views. C, M. covacevichae, sp. nov., dorsal view. D, F, M. spurgeon, sp. nov., ventral (D) and dorsal (F) views. E, M. paulstumkati, sp. nov., ventral view. G, H, M. elegans, sp. nov., ventral view, paratype, Upper Boulder Creek $(\mathrm{G}) ; \mathrm{H}, \mathrm{Q}$ S S39045. Scale linc $=1 \mathrm{~mm}(\mathrm{~B}-\mathrm{G}), \mathrm{H}=0.8 \mathrm{~mm}$.

Platypus Ck, Pauls Luck Track, 13 km W Mossman, $16^{\circ} 27^{\prime} \mathrm{S} 145^{\circ} 16^{\circ}$ E, pitfall, 1-16 Jan 1990, ANZSES expedition, QM S31193. All in NEQld and rainforest. except as noted.

DIAGNOSIS. Males are unique in the large triangular thom on the basal embolus and the large scooped tibial apophysis. Females differ from those of M. paulstumkati in the full transverse copulatory groove.

DESCRIPTION. Holotype of QM S3II09. Carapaec 4.20 long, 3.32 wide. Abdomen 3.00, 2.56 wide. Total Iength, 7.4 .

Colour: carapaec yellow brown with narrow dark submarginal band, darker on striae. Abdomen dorsally mostly yellow brown with dark "shoulders', two pairs dark 'eyes', and mottled black tip above spinnerets; ventrally yellow

TABLE 2. Leg measurements of Megateg bariholomai, holotype male and allotype female.

Male	1	11	111	IV	Palp
Femur	3.01	3.01	2.92	3.46	1.46
Patella	1.15	1.15	1.15	1.31	0.69
Tibia	4.00	3.61	2.38	3.15	1.08
Metatarsus	3.92	3.00	2.77	4.08	1.23
Tarsus	1.92	1.46	1.31	1.77	
Total	14.00	12.23	10.53	13.77	4.46
Female	1	11	111	$1 V$	Palp
Femur	2.54	2.69	2.23	2.92	1.31
Patella	1.31	1.38	1.15	1.31	0.85
Tibia	2.46	2.31	1.85	2.61	0.69
Metatarsus	2.00	1.92	1.69	2.85	0.92
Tarsus	0.77	0.69	1.00	1.38	
Total	9.08	8.99	7.92	11.07	3.77

FIG. 7. Megateg ramboldi, sp. nov., कै palpal bulb, scanning electron micrograph. ventral view. A, bulb; B, distal bulb.
brown with transverse black flecks. Legs ycllow brown with dark ring apically on all leg fcmora and 2 dark rings ventrally on femur IV and dark bands on distal tibia III, IV.
Eyes: AME:ALE:PME:PLE, 10:I4:8:I3. Eye group front width: back width: length, 55:71:36. Interspaces: AME-AME, 0.7: AME-ALE, 0.3; PME-PME, 1.7; PME-PLE, 0.7.
Chelicerae: $\mathrm{p}=3, \mathrm{r}=3-4$ tecth.
Spines: I: fe pvl strong, p2d3r4; pa rl; ti p 2 d 3 r 3 r 2.2 .2 .2 ; mc p2r2v2.2.2. Il: fe pv1 wcak, p3d3r4; pa rl; ti p2d3r3v2.2.2.2; me p4r3v2.2.2. III: fe p4:d3r4; parl; ti p2d2r2v2.2.2; me p4r4 v 2.2.2. Distal III \& IV met with close paircd laterals. IV: fe p4d3r3; pa rl; ti p2d2r2 v.2.2.2; me p4r5v7 unpaired. Palp fe d3rl.
Legs: scopula absent or at most very thin on tarsi 1. Tibial fracture I-IV distinct pro- and retrolaterally. Trochanteral notches shallow, deeper in back of notch to front, twice as wide as dcep.
Palp (Fig. 9A-D): tibia long, concave for length retrolaterally; basally, tibia with raised mound of 20-30 long, thick, dark, curved setac in cluster; scoop set wide, tibia distally incrassate. Tibial apophysis broad, converging slighty apically with thicker apex. Tibia with sclerotised collar oppositc tibial apophysis tip and two largc sclerotised collar-like processes, one distal, onc retroventrally against base of cymbium. Cymbium: scopula extends over distal half; basodorsal process small and triangular, arising
from discontinuously excavate surface; another triangular process retrolaterally and a small conical mound ventral of that; latter two flank a tibial collar. Paracymbial discontinuity a distinct, triangular, glabrous mound. Bulb: median apophysis small, roughly rcctangular with apical hook, opposed by thin translucent short, scooped tegular vane, base irregular, large, cordatc; embolus a wide, flat flange with one of two short conical processes prolateral of median apophysis. Translucent unsclerotised process between median apophysis and cmbolus (in line bctween) and one prolateral off basc of median apophysis. Tegulum extensive, a broad collar occupying ca. 300° of bulb.
Allotype \circ QMS31110. As for malc except as follows. Carapace 4.56 long, 3.72 wide. Abdomen 5.56, 4.52 wide. Total length, 10.4.
Colour: carapace brown with irregular darkcr areas centrally \& on margins. Abdomen like malc with light flecking across abdomen. Legs extensively banded (amaurobiid basic pattern); distal and ventral femora, lateral patcllae, distal tibiae and metatarsi.
Eyes: AME:ALE:PME:PLE, 11:16:7:13. Eye group front width: back width: length, 64:91:41. Interspaces: AME-AME, 0.9; AME-ALE, 0.3; PME-PME, 2.2; PME-PLE, 1.0.
Chelicerae: $\mathrm{p}=3, \mathrm{r}=3$.
Spines: I: fe pv1 strong, pld2rl; pa 0; ti v2.2.2.2; me v2.2.2. 11: fe pld3rl; pa 0 ; ti v2.2.2.2; me

FIG. 8. Megateg ramboldi, sp. nov., \%. A, epigyne. B, C, vulva, axial view from front (B), ventral view (C).
v2.2.2. III: fe p3d3r3; pa 0; ti p2d2r2v2.2.2. me p4r4v2.2.2. IV: fe p2d2rl: parl; ti p2d3r2v5; me p5r6v6. Palp: fe pld2; pa 0; ti p2; ta p3.
Legs: seopula on tarsi 1, II weak. Claws short with 3-4 teeth. Tarsal rod long, in apieal I/3.
Epigyne (Fig. 9F.G): a cordate plate with two narrow curved grooves; vulva a pair of spheres.
DISTRIBUTION AND HABITAT. High altitude ($>700 \mathrm{~m}$) rainforest at Mt Spurgeon, Mt Demi, Mt Lewis, Mossman Bluff, and Pauls Luek Traek, west of Mossman, NE Qld.

> Megateg covacevichae sp. nov. (Figs 4, 5B, 6C, 10, 11; Table 3)

ETYMOLOGY. For Jeanette Covaeevich, Senior Curator, Reptiles, Queensland Museum, 1966-2002.
MATERIAL. HOLOTYPE: 8 . Mt Windsor Tbld, Whypala SF, $16^{\circ} 15^{\circ} \mathrm{S} 145^{\circ} 02^{\circ} \mathrm{E}$, notophyll vine forest, pitfall, Summer 92/93, S.Burnett, QM S24541. PARATYPES: allotype, ㅇ, as for holotype, QM S24549; 3 ㅇ $ㅇ$, as for holotype, QM S33140, S33146, S33156; 1 \%.

Windsor Tableland, 5.7 km past barraeks, $16^{\circ} 14^{\prime} \mathrm{S}$ $145^{\circ} 00^{\circ} \mathrm{E}, \mathrm{NEQLD}$, rainforest, sieved litter, 23 Nov 1997, G Monteith, QM S43024.1 9. Mt Lewis Rd. old Barraeks area, $16^{\circ} 35^{\prime} \mathrm{S} 145^{\circ} 17^{\circ} \mathrm{E}, 13$ Jan 1990, ANZSES expedition, QM S31194. OTHER MATERIAL. 5 juvs., taken with holotype, QM S32949.

DIAGNOSIS. Differs from M. paulstumkati and M. bartholomai in males having a mueh longer palpal tibia and the tip of the tibial apophysis is broadly rounded rather than a pointed taper; females differ in that the median septum ridges are elearly closer distally than proximally.

DESCRIPTION. Holotype ô. Carapace 4.16 long, 3.20 wide. Abdomen 3.00, 2.56 wide. Total length, 7.5 .
Colour: carapace yellow brown with brown around fovea, along strial ridges and submarginally; dark vee in front of fovea, along eaput edge and in diagonal line lateral of PLE. Legs with dark bands on distal femora to metatarsi and 2 extra below femora. Sternum, maxillae and labium yellow brown. Abdomen entirely darkly mottled.
Eyes: AME:ALE:PME:PLE, 8:15:9:15. Eye group front width: baek width: length, 53:74:35. Interspaees: AME-AME, 0.8; AME-ALE, 0.3; PME-PME, 1.5; PME-PLE, 0.7.
Chelicerae: $\mathrm{p}=3, \mathrm{r}=3$.
Spines: 1: fe pvIp2d3r2; pa 0; ti p3d3r3v2.2.2.2; me v2.2.2. 11: fe pv 1 strong, p3d3r3; pa rl; ti p3d3r3v2.2.2.2; me plr2r2v2.2.2. 11 I : fe pvIp3d3r4; pa rl; ti p2d2r2v2.2.2; me p4r3v2.2.2. IV: fep4d3r3; parI; tip2d2r2v.2.2.2: me p5r5v7 unpaired. Palp: fe pv/p/d1.2. Tibiae \& metatarsi I, 11 with spines overlapping. Metatarsus I long, bowed.
Legs: long; seopula absent. Tibial fraeture I-IV distinet prolaterally. Trochanteral notehes shallow, I, II \& on IV, decper on III. Tarsal rod at 3/8 from base. Tufts small, entire. 3-4 teeth on claws. RCH not evident.
Palp: tibia mueh longer than in M. paulstumkati; bowed, eoneave, prolaterally; basal mound low, setose. Tibial apophysis a broad, blunt, flat blade. Cymbinn: seopula extent $=2 / 3$; basal eymbium prodorsally indented asymmetrically opposite more dorsal lobe on tibia, forms small, square, rounded proeess on retroventral comer: margin indented retrobasally, wide for most of basal half; margin open apieally. Bulb: median apophysis a reetanguloid groove with one eorner apieally hooked, with irregular, extensive, reetangular base margin; embolus narrow, tapered flange;

FIG. 9. Megateg bartholomai, sp. nov. ठ palp, A-D; ; 7 , E, F. A, C. D, palpal tibia, cymbium and bulb (B). ventral (A, B, D) and retrolateral view (C): E, anterior shield, abdomen, showing attaehment dises (arrows). F, epigyne; G, vulva.
translucent vane set just bchind embolus; large, u-shaped tegulum.

Allotype ${ }^{\circ}$. As for male except as follows. Carapace 4.00 long, 3.20 widc. Abdomen 4.24, 3.36 widc. Total length, 9 .

As for male except: shorter-legged. No posterior sternum extension but post-sternal cuticle sliver is free. Legs more strongly marked (but vary to less marked in other specimens). Two dark stripes down cach chelicerae.
Eyes: AME:ALE:PME:PLE, 8:11:9:12. Eye group front width: back width: length, 51:85:37.

FIG 10. Megateg covacevichae, sp. nov., ô palpal tibia (D), cymbium and bulb (B). A-C, ventral view. C, \&, epigyne: D, palpal tibia, retrolateral view.

Interspaces: AME-AME, 1.3; AME-ALE, 0.6; PME-PME, 2.5; PME-PLE, I.2.
Spines: I: fe pvlpld2rl; pa 0; ti v2.2.2.2: me v2.2.2. II: fe p2d2rl; pa 0; ti 2.2.2.2; me v2.2.2. II1: fe p3d3r3; pa rl; ti p2d2r2v2.2.2; me p4r4v2.2.2. IV: fe p2d3rl: parl; tip2d2r2v6; me p4r3v6. Palp: fe p0d1.2; pa 0; ti p2; ta p3.
Legs: seopula absent: 2-3 large teeth on claws. Rod at basal I/3.
Epigyne: ovoid with two eonvergent shallow grooves in V-shape; vulva simple.

DISTRIBUTION AND HABITAT. High altitude ($>700 \mathrm{~m}$) rainforest at Mt Windsor Tableland and Mt Lewis, norteastern Queensland.

Megateg elegans sp. nov.

(Figs 3F, 4, 5A, 6G,H, 12, 33E,F; Table 4)
MATERIAL. HOLOTYPE: 10°, Cape Tribulation, 5 km W (Site 10), $780 \mathrm{~mL}, 16^{\circ} 05^{\circ} \mathrm{S} 145^{\circ} 26^{\circ} \mathrm{E}$, stick brushing, 29-30 Sep 1982, GMonteith, D.Yeates, GThompson, QM S31113. PARATYPES: Allotype, \circ, as above, QM S31114.2 9 ㅇ, as above, QM S31115; 10°, Davies Ck Rd, $17^{\circ} 03^{\circ} \mathrm{S} 145^{\circ} 36^{\circ}$ E, sieved litter, 17 Dee 1989, GMonteith,

4 km W, center of Bellenden Ker, $17^{\circ} 16^{\circ} \mathrm{S} 145^{\circ} 49^{\circ} \mathrm{E}$, NEQLD, 9-11 Oct 1991, GMoncith. H.Janetzki, D.Cook. QM S31178: 1 9, Massey Ra, $17^{\circ} 16^{\circ} \mathrm{S} 145^{\circ} 49^{\circ} \mathrm{E}$, sieved litter, 2 May 1983, G.Monteith, D.Cook, QM S31159. Mit Bartle-Frerc, W Base, $17^{\circ} 23^{\circ} \mathrm{S} 145^{\circ} 46^{\circ} \mathrm{E}: 2$ o $^{\circ} 0^{\circ} .1$ O, flight intercept trap \& pitfall trap, 25 Nov 1994-10 Jan 1995, G. Montcith, J. Hascnpusch, QM S31137, S31158; 3 ठ d $^{\circ}$, same data but pitfall, 10 Jan-31 Mar 1995, QM S31136. Mt Edith (GS2), $17^{\circ} 06^{\prime} \mathrm{S}$ $145^{\circ} 37^{\prime} \mathrm{E}$, flight intercept trap, P. Zborowski: 1 d, 31 May-30 Jun 1995, QM S39120; I o, 3 Jan-4 Feb 1995, QM S39078; 1 오, pitfall, I Dee 1994-3 Jan 1995. QM S39123. Mt Fisher (BS2), $17^{\circ} 34^{\prime} \mathrm{S} 145^{\circ} 34^{\circ} \mathrm{E}$, pitfall \& flight intereept trap, L. Umback: 2 ठ δ. pitfall, 30 Nov 1995-3 Jan 1996, QM S39086, S39046; $2 \delta^{\delta} \delta^{\circ}$, same locality but 1 Dec 1994-3 Jan 1995. P. Zborowski, QM S39126; 1 ㅇ, 2 Aug-4 Sep 1995. QM S39094; 1 ó, 2-30 Nov 1995, QM S39124; 2 \& 9 , same data but litter, 27 Apr 1982, GMonteith, D.Ycatcs, D.Cook. QM S31125; I ó, I ㅇ, Mt Fisher, Kjellberg Rd, $17^{\circ} 32^{\prime} \mathrm{S} 145^{\circ} 33^{\circ} \mathrm{E}$, pitfall, I Dee 1993-25 Feb 1994, J. Hasenpuseh, QM S31117; $\delta, 2$ 우, Mt Fisher, Whiteing Rd, $17^{\circ} 33^{\circ} \mathrm{S} 145^{\circ} 34^{\circ} \mathrm{E}$, sieved litter, 5 May 1983, GMonteith, D. Yeates, QM S31119,

GThompson. QM S31134; 1 ㅇ. Hugh Nelson Ra (GS3), $17^{\circ} 27^{\circ} \mathrm{S} 145^{\circ} 29^{\prime} \mathrm{E}$, pitfall, $6 \mathrm{Mar}-4 \mathrm{Apr} 1995, \mathrm{P}$. Zborowski, QM S39079: I of. Islcy Hills, $17^{\circ} 03^{\circ} \mathrm{S}$ $145^{\circ} 42^{\circ} \mathrm{E}$, sieved litter \& moss, i Dec 1993. G. Monteith, H.Janctzki, QM S39082. Lambs Head, $17^{\circ} 02^{\prime} \mathrm{S} 145^{\circ} 39^{\prime} \mathrm{E}$: 3 ㅇㅇ, sieved litter (Agathis). 10 Nov 1981, Earthwateh, Qld Muscum. QM S31179; 1 O. pitfall. 10 Dec 1989-8 Jan 1990, G.Monteith, GThompson, H.Janetzki, QM S31177. Longlands Gap (BSI), $17^{\circ} 28^{\prime} \mathrm{S} 145^{\circ} 29^{\circ} \mathrm{E}: 2$ ㅇㅇ, flight intercept trap, 30 Nov 1995-3 Jan 1996, L. Umback, QM S39080. 39087; 1 ס ${ }^{\circ}$, flight intercept trap. 5-27 Feb 1996. L. Umback. QM S39083. Massey Ck (BS3), $17^{\circ} 37^{\prime} \mathrm{S}$ $145^{\circ} 34^{\prime}$ E. L. Umback: $20^{\circ} \delta^{\circ}+1 \delta^{\circ}$, pitfall, 31 Jan- 27 Feb 1996, QM S39084, S39088; 1 ㅇ, flight intercept rap, 31 Jan-27 Feb 1996, QM S39115; o, piffall. 30 Nov 1995-3 Jan 1996, QMS39095; 1 , , pitfall, 2 Aug-4 Sep 1995, QM S39104: ' , pitfall, 4 Jul-2 Aug 1995, P. Zborowski, QM S39090: 2 O $\%$, pitfall, 6 Mar-5 Apr 1995, P. Zborowski, QNI S39091. S39108; 2 ㅇㅇ․ pitlall, 1 Dee 1994-3 Jan 1995, P. Zborowski, QM S39121, S39122: 1 ó, 2 앙. piffall. 3-4 Feb 1995, P. Zborowski. QM S39089, S39045. 1 万, Massey Ck, 12 km SW Millaa Millat, $17^{\circ} 36^{\circ} \mathrm{S}$ $145^{\circ} 33^{\prime}$ E, pitfall, I Dec 1993-25 Feb 1994, J. Hasenpusch, QM S31135; 1 ? same data but. sieved litter, 4 May 1983, GMonteith, D.Yeates, QM S31122. 2 우, Masscy Ra,

S31138; 2 i $9, \mathrm{Mt}$ Formartine South, $10 \mathrm{~km} \mathrm{N}. \mathrm{Kuranda}$, $16^{\circ} 43^{\prime}$ 'S $145^{\circ} 37^{\prime} \mathrm{E}$, pitfall, 23-24 Nov 1990, GMonteith, GThompson, QM S31176; 1 ठ, Mt Haig (GS1), $17^{\circ} 06^{\circ} \mathrm{S}$ $145^{\circ} 36^{\circ} \mathrm{E}$ flight intercept trap, 31 May- 30 Jun 1995, P. Zborowski, QM S39125; 1 of, same data but 29 Scp-31 Oct 1995, L. Umback, QM S39092; 1 ㅇ. Palmerston NP (NQ 11), $17^{\circ} 35^{\prime}$ S $145^{\circ} 42^{\circ}$ E, NEQLD, pitfall, 30 Oct 1991-24 Jul 1992. R.Raven, P.Lawless, M.Shaw, QM S24725:18. Ravenshoc, $17^{\circ} 36^{\circ}$ S $145^{\circ} 29^{\circ} \mathrm{E}$, 15 Jul 1976, P. Filewood, QM S31142; $1 \delta^{\circ}$. Vine Ck Rd, $17^{\circ} 41^{\circ} \mathrm{S}$ $145^{\circ} 32^{\circ}$ E, sieved litter, 24 Nov 1994, G Monteith. QM S31139: 1 万. Malaan Ra, 2 km S Palmerston Hway, $17^{\circ} 36^{\circ} \mathrm{S} 145^{\circ} 24^{\circ} \mathrm{E}$, piffall, 10 Jan-7 Mar 1995, G. Monteith, J. Hasenpuseh, QM S31120: 1 ó, Marceba, $22 \mathrm{~km} \mathrm{SE}, 17^{\circ} 07^{\circ} \mathrm{S} 145^{\circ} 36^{\circ} \mathrm{E}$, sieved litter, 4 Nov 1983 , D. Yeates GThompson. QM S31124. All in NEQ. OTHER MATERIAL. QM S32694, QM S31141, QM S31140. QMS20775, QMS31121, QMS31118, QMS31083, QM S 41115.
DIAGNOSIS. Males differ from those of M. ramboldi in the more slender median apophysis, spine-like embolus and cluster of bristles retrobasally on palpal tibia; females differ from

FIG. 12. Megateg elegans, sp. nov. A-F, ठ, palpal tibia (C, D), eymbium and bulb (A, B); A, D, E, Massey Range; B, C, F, Boulder Creek. E, \%, epigyne. F, tibial apophysis. All ventral views. G-H, \%, QMS 31178; G, epigyne; H , vulva.
those of M. ramboldi in having the lateral epigynal grooves further apart than eaeh is from the lateral eleats.

DESCRIPTION. Holotype © . Carapace 4.40 long, 3.60 wide. Abdomen 4.00, 2.96 wide. Total length, 8.8.

Colour: carapace \& chelicerae orange brown; darker shoulders over boss, striae slightly darker, caput with faint dark lines, in front of fovea a dark triangle directed back. Abdomen yellow brown, dark brown mottled shoulders, light brown mottling breaks predominantly pale abdomen. Legs without mottling, concolorous with carapace, except with darker areas under fcmur III, IV. Abdomen ventrally mostly pallid with brown flecking darkest around spinnercts. Sternum without pattern.
Carapace: light pile of fine black hairs, not obscuring surface, Ionger bristles around fovea and on carapace.
Eyes: back eye row much wider and occupies 0.73 of headwidth. Front edge of PLE is just behind back edge of PME, i.e. nominally 3 rows. Eye directions: AME look forward, ahcad, slightly up and ca. 30° to side: ALE similar but less up and less to side; PME only up and slightly to side, on mound PLE, to side and back and slightly up. Interspaces: AME:ALE:PME:PLE, 6:8:5:7. $\mathrm{AM}-\mathrm{AM}=5, \quad \mathrm{AM}-\mathrm{AL}=3, \quad \mathrm{PM}-\mathrm{PM}=10$, $\mathrm{PM}-\mathrm{PL}=13$. Group front width: back width: Iength, 39:53:15.
Chelicerae: $\mathrm{p}=3$ small spaced teeth, $\mathrm{r}=3-4$ spaced teeth.
Legs: scopula absent or at most very thin on tarsi I.
Spines: I: fe pul strong, p2d3r3, par rl, ti p 3 d 3 r 4 v 2.2 .2 .2 , me plv2.2.2. II: fe proventral 1 strong, p2d3r4, pa rl, ti p3d3r3v2.2.2.2, me p2v2.2.2. III: fe p4d3r4, pa rI, ti p2d2r2v2.2.2, me p2dIrlv2.2.2.2. IV: fe p4d3r2, pa rI, ti p2d2r2v2.2.2, me p4r5v2.2.2.2. Palp: fc pldlrl, rest 0 .
Spinnerets: ALS short with coniform tip. PMS short cylindrical. PLS more slender than ALS. All with domed apical segments. Colulus a wide. flat, setosc area.
Palp: tibia viewed from below, much longer than wide, straight, with glabrous area in distal ventral third: basal retrolateral edge with oval area of distinct, long, thick bristles; retrolateral tibial apophysis arises subdistally in linc with tuft (i.e. almost off dorsal face): retrodorsal cdge saddle-shaped; apophysis elongate, sinuous. Two rounded flattened keels on distal ventral and prodorsal edges of tibia. Cymbium: scoop-shaped, narrows strongly basally with small process flanked by two basal cymbial procescs; retrolatcral base gradually slopes up to extensive scopulate area extending to tip; retrobasal edge excavate in profile; excavation extends to tip widen cymbial edge pro- than

TABLE 4. Leg measurements of Megateg elegans, holotype male and allotype female.

Male	1	11	111	1 V	Palp
Femur	4.08	4.00	3.38	3.69	1.85
Patella	1.38	1.54	1.23	1.15	1.08
Tibia	5.08	4.08	2.61	3.46	1.00
Metatarsus	4.85	3.23	3.00	4.31	-
Tarsus	1.92	1.23	1.23	1.85	1.00
Total	17.31	14.08	11.45	14.46	4.93
Femalc	1	11	111	$1 V$	Palp
Femur	2.54	2.54	1.85	3.23	1.15
Patella	1.69	1.61	1.15	1.08	0.77
Tibia	2.69	2.38	1.85	2.69	1.00
Metatarsus	2.23	2.23	1.85	3.15	2
Tarsus	0.85	0.92	0.85	1.23	0.92
Total	10.00	9.68	7.55	11.38	5.84

retrolaterally. Bulb: tegulum dominant basally; median apophysis a small scoop with small apical hook directed ventrally; embolus arises prolaterally, distinet, long tip just above laminar vanc.
Allotype ${ }^{\circ}$ QM S31114. As for male exeept as follows: Carapace 4.72 long, 3.76 wide. Abdomen $5.20,3.60$ wide. Total length, 10.4.

Colour: carapace dark red brown with darker margins, strial margins of caput black; foveal arca a dark triangle, dark irregular lines on caput, long brown bands vertically on chelicerae. Legs orangc brown with darker areas on femur-metatarsi; strongly marked (not banded) areas on ventral femora, coxae \& sternum. Abdomen dorsally mottled brown \& black, anteriorly an elongate brown dome fringed with black then pallid borders posteriorly merging into dark chevrons on either mottling; ventrally predominantly mottled.
Carapace: pile of golden hairs not obscuring cuticle plus uniformly placed short black setae centrally around fovca, onto caput and amongst cyes.
Chelicerae: $\mathrm{p}=3-4, \mathrm{r}=3-4$.
Eyes: AME:ALE:PME:PLE, 5:6:5:6. Eye group front width: back width: length, 37:47:20. Interspaces: AME-AME, 1.0; AME-ALE, 0.6; PME-PME, 2.4; PME-PLE, I.5.
Legs: trochanteral notches shallower than in male, asymmetrical-decper in back of notch than in front; tarsal rod present; scopula wcak on tarsi I, II, distal I/3 and weak on metatarsi I, II.

FIG. 13. Megateg gigasep, sp. nov., \%. A, epigyne; B, C, vulva.

Spines: I: fe pvipld2r1; pa0;ti v2.2.2.2; me v2.2.2. II: fe p2d3r1, rest as for I. III: fe p3d3r2; pa rI; ti p2d2r2v2.2.2; me p4r4v2.2.2. IV: fe p2d2rl: parl; tip2d2r2v5; me p4r4v2.2.2. Palp: fe pld2; pa0; ti p2dı; ta dlp3.
Claws: legs as in male. Palpal claw with 3-4 teeth. Epigune: small, lightly selcrotised with pair of narrow erescent hoods, one pair outer and near furrow, one pair inner and eentral, a narrow medial ridge posteriorly. Vulva simply s-shaped.
DISTRIBUTION AND HABITAT. A relatively widely distributed species in rainforest from Cape Tribulation south to about Ravenshoe, NE QIdland. M. elegans is the lowland sister species of M. ramboldi, known only from Bellenden Ker Range and Mt Bartle-Frere, the highest peaks of the Wet Tropies World Heritage Area.
REMARKS. Material from Upper Boulder Ck, Walter Hill Range, are excluded from the type series; geographically, they represent the southern most known extent of the speeies. The epigyne is most like that of M. elegans with extensive lateral eleats overlapping strongly with lateral ridges. The tibial apophysis, like that of M.

TABLE 5. Leg measurements of Megateg gigasep sp. nov. holotype female.

	1	11	111	1 V	Palp
Femur	2.69	2.63	2.50	3.25	1.44
Patella	1.56	1.38	1.25	1.38	0.75
Tibia	2.50	2.19	1.69	2.69	0.88
Metatarsus	2.00	1.81	2.13	3.56	
Tarsus	0.81	0.81	1.31	1.31	1.06
Total	9.56	8.82	8.63	12.19	4.13

elegans, has a retrobasal setal eluster. However, the embolus is intermediate between the spike of M. elegans and broad sheath of M. ramboldi.

Megateg gigasep, sp. nov.
 (Figs 4, 13; Table 5)

ETYMOLOGY. An arbitary combination of letters.
MATERIAL. HOLOTYPE: 9 . Karnak to Devils Thumb (site 4), $8-12 \mathrm{~km}$ NW Mossman, $16^{\circ} 23^{\circ} \mathrm{S} 145^{\circ} 17^{\circ} \mathrm{E}, 26$ Dee 1989-15 Jan 1990, ANZSES expedition, QMS53563.

DIAGNOSIS. Females have the broadest septum of the genus.

DESCRIPTION. Holotype of QM S53563. Carapace 4.45 long. 3.32 wide. Abdomen 5.32 long, 3.64 wide. Like Megateg lesbiae but:
Colom: carapace yellow brown with black edges, black areas between fovea and edge and triangular black foveal area. Abdomen dorsally mottled, ventrally pallid with irregular grey zones medially. Legs fawn, femora with dark transverse bars forming two pallid bands.
Spines: tibiac I, II with 4 spines pro- and retroventrally on 1, II.
Spinnerets: large, triangular, fleshy colulus; 3 large spigots evident dorsally on PMS.
Epigyne: broad, rounded median septum with two lateral triangular 'cars' anteriorly; lateral cleats impinge on posterior margin of septum; vulva consists of two flattened spheres on each side.

DISTRIBUTION AND HABITAT. Montane rainforest between Karnak and Devils Thumb, NW of Mossman, NE Qld.

TABLE 6. Leg measurements of Megateg leshiae, holotype female.

	1	11	111	1 V	Palp
Femur	2.31	2.54	2.31	2.85	1.31
Patella	1.31	1.15	1.00	1.08	0.61
Tibia	2.31	2.15	1.69	2.38	0.85
Metatarsus	1.92	1.77	1.85	3.08	0.77
Tarsus	0.69	0.77	0.69	0.92	
Total	8.54	8.38	7.54	10.31	3.54

Megateg lesbiae, sp. nov.
(Figs 4, 14; Table 6)
ETYMOLOGY. For Lesbia Dobson, staunch supporter of the Queensland Muscum.
MATERIAL. HOLOTYPE: $\%$, Upper Gayundah Ck, Hinchinbrook $1,18^{\circ} 22^{\prime} \mathrm{S} 146^{\circ} 13^{\circ} \mathrm{E}$, NEQLD, rainforest at 10 m altitude, 9-11 Nov 1984. G Monteith. D. Cook, QM S31160. PARATYPES: 2 ㅇ \& same data, QM S31123.

DIAGNOSIS. Females have the most subtle epigyne of the genus - a broad flat plate with two small lateral cleats and a medial indistinct pair of transverse ridges.

DESCRIPTION. Holotypc \&. Carapacc 4.40 long, 3.56 widc. Abdomen $3.68,3.20$ wide. Total length, 4.2.
Eyes: AME;ALE:PME:PLE, 8:15:8:14. Eye group front width: back width: length, 65:90:40. Interspaces: AME-AME, 1.3; AME-ALE, 0.8; PME-PME, 2.8; PME-PLE, 1.0.
Chelicerae: $\mathrm{p}=3, \mathrm{r}=3$.
Spines: I: fe pulpl d2; pa 0; ti v2.2.2.2; me v2.2.2.
II: fe p2d3rl; pa 0; ti v2.2.2.2. me v2.2.2. 11I: fe p3d3rl; pa r1; ti p2d2r2v2.2.2. me p5r5v2.2.2. IV: fe p3d3rl; parl; tip2d2r2v2.2.2; me p5r6v7. Palp: fe pld2; pa 0; ti p2d1; ta p3.
Legs: no scopula on tarsi 1, 11 .
Epigyne: originally covcred by thin and hirsute (from cymbial scopula?) epigynal plug; a broad, wide central depression with very widcly set small crescentic cleats laterally between which a pair of indistinct transversc ridge marking copulatory fossae; simplc, ovoid spermathecae with fertilisation duct posteriorly.
DISTRIBUTION AND HABITAT. Lowland (10m) rainforest at Upper Gayundah Ck, Hinchinbrook Island, NE Qld.

Megateg paulstumkati, sp. nov. (Figs 4, 5C, 6E, 15, 16, 17; Table 7)
ETYMOLOGY. For Paul Stumkat, Senior Technician, Queensland Museum, 1984-2002.

FIG 14. Megateg lesbiae, sp. nov., f. A, epigyne; B, vulva.

MATERIAL. HOLOTYPE: 1 ठ, Devils Thumb to Paul's Luck Site $12,16^{\circ} 23^{\prime}$ S $145^{\circ} 17^{\circ}$ E, NEQLD, pitfall, 27 Dec 1989-15 Jan 1990, ANZSES expedition, QM 331171. PARATYPES: Kamak-Devils Thumb, $8-12 \mathrm{~km}$ NW Mossman, $16^{\circ} 23^{\circ} \mathrm{S} 145^{\circ} 17^{\circ} \mathrm{E}, 26$ Dec 1989-15 Jan 1990, ANZSES expedition: 1 allotype 9 . Site 9 , QM S31172; 3 ó ठ', site 7, QM S31188;2 ó $^{\circ}$, Site 8, QMS31185; $1 \delta^{\circ}$, Site 9. QM S31187: $2 \delta^{\circ} \delta^{\circ}$, site 9a, QM S31186: 5 ठ ${ }^{\circ}$, QM S31173.1 8', Devils Thumb, 12 km WNW Mossman. Sile 11, $16^{\circ} 23^{\circ} \mathrm{S} 145^{\circ} 17^{\circ}$ E, pitfall, 27 Dec 1989-15 Jan 1990, ANZSES expedition, QM S25897. 2 ठ̊ ठ, Mt Spurgeon, $16^{\circ} 24^{\prime} \mathrm{S} 145^{\circ} 13^{\circ} \mathrm{E}$, rainforest, pitfall, $15-20$ Oet 1991, GMonteith, H.Janetrki, D.Cook, L.Roberts, QM S20516;3 $0^{\circ} \delta^{\circ}, \mathrm{Mt}$ Spurgeon. 7 km N of (camp 2), $15^{\circ} 28^{\prime} \mathrm{S}$ $145^{\circ} 13^{\circ}$ E. piffall, $17-19$ Oet 1991. G Monteith, D. Cook. L. Roberts, QM S31189. All in NEQld.

DIAGNOSIS. Females differ from those of M. elegans in the bowed (in ventral view) palpal tibia with distinctly pointed RTA; females differ in that the epigyne lacks lateral cleats and unlike in M. covacevichae the short epigynal ridges arc as wide apart antcriorly as posteriorly.
DESCRIPTION. Holotype ס. Carapacc 4.32 long, 3.60 wide. Abdomen 3.80. 2.64 widc. Total length, 8.2.
Eves: AME:ALE:PME:PLE, 10:13:8:12. Eyc group front width: back width: length, 60:76:36. Interspaces: AME-AME, 0.7; AME-ALE, 0.5; PME-PME, 1.7; PME-PLE, 1.2. Centres of ALE

FIG. 15. Megateg paulstumkati, sp. nov., of palpal tibia, cymbiun and bulb (B, C), ventral (A-C) and tibial apophysis, retrolateral view (D); E, \& epigyne.
just behind back edge of AME. Front edge of Chelicerae: $\mathrm{p}=3, \mathrm{r}=3$.
PLE is in line behind back edge of PME.

FIG. 16. Megaleg paulstumkati, sp. nov., \&. A, epigyne; B, vulva.

Spines: I: fe pvI strong, p2d3r4: pa rl; ti $\mathrm{p} 3 \mathrm{~d} 3 \mathrm{r} 3 \times 2.2 .2 .2$; me v2.2.2 . Il: fe pv1 weak. p3d2r3; pa r1; ti p3d3r3v2.2.2.2: me p4r3v2.2.2. III: fe p4d3r4; pa rl; ti p2d2r3v2.2.2: mc p3dlr3v2.2.2. IV: fe p4d3r3; pa rl; ti p2d2r2v.2.2.2; me p4r5v8. Palp: fe pld2rl.
Legs: scopula absent; tibial fracture I-IV prolaterally and retrolaterally distinet. Trochanteral notehes shallow, deeper in back of noteh to from.
Palp: tibia much longer than wide bowed with retrolateral saddle: eluster of short hairs on retrobasal mound, diagonally opposite face glabrous; 3 distinet selerotised collars distally. Tibial apophysis a long, elegant, tapering hook.

TABLE 7. Leg measurements of Megateg paulstumkati, holotype male and allotype female.

Male	1	II	III	IV	Palp
Femur	3.61	3.61	2.69	3.92	1.85
Patella	1.54	1.69	1.23	1.46	0.85
Tibia	4.92	4.00	3.00	3.54	0.77
Metatarsus	4.92	3.92	2.69	4.61	0.85
Tarsus	1.85	1.69	1.38	1.77	
Total	16.84	14.91	10.99	15.30	4.32
Female	1	11	111	$1 V$	Palp
Femur	2.85	2.92	2.54	3.08	1.46
Patella	1.46	1.31	1.08	1.31	0.61
Tibia	2.92	2.31	1.92	2.46	0.85
Metatarsus	2.31	1.92	2.23	3.15	0.92
Tarsus	0.69	0.92	1.00	1.61	
Total	10.23	9.38	8.77	11.61	3.84

Cymbium: scopula extends for $2 / 3$. From above (dorsal), small triangular process basal retrolaterally forming saddle opposing spur and rounded mound on prolateral side: basodorsal process absent: paracymbial discontinuity a slight bulge evident basally. Bulh: median apophysis a long, wide scoop tapering to simple point: basally a hyaline flange with selerotised basal edge; base irregular, small. Embolus sigmoidal with hyaline scoop along upper (inner edge) distally. Two hyaline opposed processes arise from base of embolus.

Allotype 9 QMS31172. As for male except as follows. Carapace 4.80 long, 3.96 wide. Abdomen 5.68. 4.48 wide. Total length, 10.8.
Eyes: AME:ALE:PME:PLE, 11:13:8:12. Eye group front width: back width: length, 50:97:39. Interspaces: AME-AME, 1.0; AME-ALE, 1.0; PME-PME, 2.3: PME-PLE, 1.3.

Spines: 1: fe pvl strong, pld2rl; pa 0; ti v2.2.2.2; me v2.2.2. II: fe p2d3rl; pa 0; ti v2.2.2.2: me v2.2.2. Ill: fe p3d3r2; pa rl: ti p2d2r2v5; me p5r5v2.2.2. IV: fe p2d3rl: parl; ti p2d2r2v5; me p5r4v6. Palp: fe d3; pa 0; (i p2d2: ta p3dırl.
Scopula: tarsi I, II weak/absent. Metatarsi I, II in distal $1 / 3$, wcak/absent.
Epigno: externally two lobes with ereseentric ridges and medial flat septum; copulatory fossae are anterior lateral of septum and duets are slenderly biconvex in eross-section with narrowest dimension in vertical plane joining spermathecae dorsally; spermathecae reniform.
Abdomen: colulus broad, triangular, fleshy.

FIG. 17. Spinnerets, Megateg paulstumkati, sp. nov,, scanning electron micrographs, apical vicw. A, C, E, of QM S31189; B, D, F, 9 QM S31155. A, B, ALS; C, D, PMS. E, F, PLS.

DISTRIBUTION AND HABITAT. High altitude ($>700 \mathrm{~m}$) rainforest, Karnak to Devils Thumb, $8-12 \mathrm{~km}$ NW of Mossman and Mi Spurgeon, NE Qld.

Megateg spurgeon sp. nov. (Figs 4, 6D.F, 18, 19; Table 8)
ETYMOLOGY. From the type locality.
MATERIAL. HOLOTYPE: ठ̉, Mt Spurgeon, 2.5 km S, $16^{\circ} 28^{\prime} \mathrm{S} 145^{\circ} 12^{\prime} \mathrm{E}$, open forest, pitfall, $13-21$ Oct 1991, G

FIG. 18. Megateg spurgeon, sp. nov., ơ, palpal tibia, cymbium and bulb; retrolateral (A), ventral (B), dorsal (C) views.

Monteith, H. Janetzki, QM S31148. PARATYPES: 3 ơ ${ }^{\circ}$ 1 ㅇ, Black Mt, $16^{\circ} 39^{\circ} \mathrm{S} 145^{\circ} 29^{\circ} \mathrm{E}, 29-30$ Apr 1982. G Monleith, D. Yeates, D. Cook, QM S31155,31149; 1 ס., as for holotype, S31157; 1 ㅇ. $2 \delta^{\circ}$ ठ゙, Mt Spurgeon, 3 km S, $16^{\circ} 27^{\prime} \mathrm{S} 145^{\circ} 11^{\circ} \mathrm{E}$. NEQLD, open forcst, human dung trap, 20-22 Nov 1997. G Monteith, D. Cook, QM S41840. S43995, S44748; $1 \delta^{\circ}$. Mt Spurgeon (trap 6). open forest, pitfall, 19 Nov 1997-8 Feb 1998. G. Monteith, D. Cook, QM S44659.
DIAGNOSIS. Males resemble those of M. bartholomai but differ in lacking the thorn basally on the embolus (Fig. 18B), having relatively longer palpal tibia with distally concave RTA and weaker retrobasal constriction in the cymbium; females resemble those of M. covacevichae in the convergent median septum but differ in having lateral epigynal cleats.
DESCRIPTION. Holotype 0°. Carapace 4.61 long, 3.56 wide. Abdomen 3.33, 2.67 wide. Total length, 8.5.
Colour in alcohol. Carapace orange brown with dark shadows on margin and dark radiating interwoven bands centrally. Eye region not darker. Abdomen dorsally with irrcgular longitudinal dark streaking broken anteriorly by 2 pairs of large sigilla surrounded by pallid zonc. Anterior plate triangular, distinct dark
orange-brown. Legs yellow brown with dark shadows on distal femora forming irregular wide nads ventrally; dark shadows also on distal tibiac. Coxae dorsally yellow brown, ventrally also with shadows distally. Abdomen ventrally mottled; chelicerae orange brown with widc dark median shadows.
Carapace. Uniformly hirsute with fine white hairs with small brown bristles along caput and through eye group. Chilum divided. Fovea long, decp. Eyes on common tubercle overhanging cye group.
Chelicerae. Slender but fangs long; $\mathrm{p}=2, \mathrm{r}=3$.
Eyes. AME:ALE:PME:PLE, 8:9:6:9. Eyc group front width: back width: length, 40:56:28. Interspaces: AME-AME, 0.6; AME-ALE, 0.5 ; ALE-PLE, 1.3: PME-PLE, 1.9; PME-PME, 0.8.
Legs. All tibiac widcly fractured. Trichobothria: two rows on tibiae for length; one straight row, lengthening distally on metatarsi and two rows on tarsi.
Spines. I: fe pv1p2d3r4; parl; ti p3d3r3v2.2.2.2; me p3r3v2.2.2. II: fe pv1p3d3r4; pa rl; ti p3d3r3v2.2.2.2; me p3r3v2.2.2. 111: fe pulp3d3r3; pa r1; ti p2d2r2v2.2.2; me pI.2.2r12.1.2v2.2.2. IV: fe p4d3r3; parl; ti

FIG. 19. Megateg spugeon, sp. nov.. A, B, ठ̀ bulb; apical bulb, ventral view; B, embolus, axial view. C, D, \& QM S31148 . C, epigyne; D, vulva.
p2d2r3v2.2.2; me pl.1.1.2r2.2.2v2.2.2. Palp: fe pldl.2, rest, 0 . Most basal spine on tibiae I, II proximal of fracture.
Claws. Short, with 3-4 large teeth. Small dense tufts below elaws.
Abdomen. Anterior overhang with selerotiscd plate with two wide circular pits.
Spinnerets. Invaginated.
Palp (Figs 18A-C, 19A,B). Tibia distinetly bowed, long, with large, heavy, subdistal-lateral RTA with coneave distal face; cluster of long strong bristles retrobasally; tibia with two distal rounded lobes proventrally and dorsally. Cymbium basally with small locking process on dorsal edge arising from darkly selerotised
glabrous area. Retrobasal corner with rounded lobe. Retrolateral basal third distinctly narrow with broad glabrous edge and distally marked by distinct discontinuity. Apieal eymbium narrowly truncate but with wide gap between edges. Tegulum basally dominant, broad, sclerotised; distally with long keel behind median apophysis and embolus. Spermatic duet sweeps from distoretrolateral edge around base to cmbolus. Median apophysis small, roughly triangular, narrowly attached and hence very mobile, with rolled distal edge forming rounded distal hook; with small membranous lamella along posterior edgc. Embolus a long paddle with basal thorn, distinctly paddle-like with small dorsal semicircular vane. A scooped V-shaped vane at

TABLE 8. Leg measurements of Megateg spurgeon sp. nov. holotype male and allotype female.

Male	1	11	111	1 V	Palp
Femur	3.94	3.94	3.28	4.11	2.11
Patella	1.72	1.44	1.33	1.44	0.94
Tibia	4.89	3.78	2.56	3.61	1.39
Metatarsus	4.94	3.67	3.17	4.50	
Tarsus	2.28	1.56	1.61	1.61	1.28
Total	17.77	14.39	11.56	15.27	5.72
Female	1	11	111	1 V	Palp
Femur	2.78	2.89	2.78	3.56	1.50
Patella	1.67	1.56	1.28	1.56	0.89
Tibia	2.61	2.22	1.78	2.89	0.89
Metatarsus	2.17	2.00	2.06	3.33	
Tarsus	0.78	0.89	1.22	1.22	1.11
Total	10.01	9.56	8.84	12.56	4.39

base of embolus but not attached to it; small triangular vane between embolus and median apophysis.
Allotype . Carapace 4.44 long, 3.50 wide. Abdomen 5.44, 4.17 wide. Total length, II. 0 .
Colour in alcohol. Carapace like male but orange brown with more extensive darker areas. Abdomen dorsally with darker shoulders, lighter mottling and 3 dark chevrons posteriorly. Legs orange brown with darker femora distally and ventrally; dark bands on lateral patellae to metatarsi; coxae ventrally dark distally. Dark shadow centrally on sternum.
Eyes. AME:ALE:PME:PLE, 9:12:8:12. Eye group front width: back width: length, 60:89:39. Interspaces: AME-AME, 1.0; AME-ALE, 0.7; ALE-PLE, 2.I; PME-PLE, 2.4; PME-PME, 1.4.
Chelicerae. $\mathrm{p}=2, \mathrm{r}=3$.
Legs. Scopula weak, laterally in two bands on metatarsi and tarsi I, II. Trichobothria: two rows on tarsi.
Spines. Strong proventral femoral spine. 1, II: fe pvIpId2r2; pa0; ti v2.2.2.2; me v2.2.2. 1II: fe p3d3r2: pa0: ti p2d2r2v2.2.2; mc pl.1.1.2dIrl.1.2v2.2.2. IV: fe p3d3rI; pa rl; ti p2d2r2v2.2.2; me pl.1.1.2.rl.2.2v2.2.2. Palp: fc d1.2; pa0; ti p2dI; ta p2.I.
Claws. Palpal claw long, $6-8$ long teeth.
Spinmerets. All on protuberant base. Spigots on PMS only distal, not dorsal.
Epigyne (Fig. 19C,D). A pair of shallow grooves define low but strongly V-shaped septum with very low, indistinct, cleats off posterior lateral corner and set at about half-length of lateral
ridges. Copulatory fossae arc longitudinal slits with long wide flared connection to each small medially constricted spermatheeae.

DISTRIBUTION AND HABITAT. High altitude rainforest at Mt Spurgeon and Black Mountain, NE Qld.

Krukt, gen. nov.
TYPE SPECIES. Kıukt piligına sp. nov.
ETYMOLOGY. An arbitary combination of letters; the gender is female.

DIAGNOSIS. Very similar in somatic morphology to Megateg but differs in that males have a short palpal tibia, a small rctrobasal tegulum, relatively long basal embolus, conical basodorsal process on cymbium, and in females the epigync is a narrow scape with large raised lateral eleats; the copulatory duct folds posteriorly then antcriorly, flattens and passes close to ventral surface folding and twisting posteriorly into a flat collariform spermatheca on each side.

The synapomorphy of Kiukt is the basodorsally narrowed cymbium.

DESCRIPTION. As for Megateg except:

Epigyne: with largc broad raiscd median scptum and lateral eleats basally; a longitudinal copulatory fossac leads dircetly to small simple posterior spernatheeae.
Male Palp: tibia as long as wide; tibial apophysis is retrodorsal (base not visible from ventral view). Cymbinm: scopula extends over distal half; retrobasal comer with deep cutaway area both soft and pallid, forming basal edge directed at tibial apophysis; viewed retrolaterally bilobed with basal incursion; dorsally basal cymbium strongly narrowed, basally with hcel; selcrotised ridge prolaterally with $c a .1 / 3$ of base; basodorsal process a rounded hecl; paracymbial discontinuity absent but pallid glabrous cutaway. Bulb: median apophysis a large hook, hooked portion ca. half total length extends to adjacent to base of median apophysis; base irregular, small. Embolic origin very broad tapering quickly and wide, not filiform to tip. Conductor absent; small, thin, foliate paraembolic lamina in all specics and adjacent membranous tegular process.
Spinnerets: females with two lines of spigots dorsally on PMS; males have three large spigots apically. ALS with two large contiguous spigots entally and a field of 20 smaller clsewhere.

FIG. 20. Krukt and Huntia, distribution map.

INCLUDED SPECIES. K. camoni, sp. nov.; K. cbbenielseni, sp. nov.; K. megma, sp. nov.; K. piligına, sp. nov.; K. vicoopsae, sp. nov.

DISTRIBUTION AND HABITAT. Montane rainforest in the Wet Tropies World Heritage Area of North Queensland.
RELATIONSHIPS. In males of Krvkt, up to 2 embolic lamina (K. piligyna, K. cbbenielseni) are present; males of Megateg, have up to 3 (see Charaeters) so the more numerous condition in Krukt is taken to be plesiomorphic. In the other three species (K. camoni, K. megma, and K. vicoopsae), only one embolic tamina is present
and in K. megma it is very tiny. That reduced number of lamina is taken to be apomorphic and shares the same distribution as the eonical form of the basodorsal process on the male palpal cymbium. The eladogram then for Krukt is: (K. gigasep-K. piligyna- K. ebbenielseni (K. cannoni-K. megma-K. vicoopsae)).

KEY TO SPECIES OF KRUKT

Males

1. Cymbium with basodorsal process (Figs 25A, B, 32B,D) . 2 Cymbium basodorsally rounded or truneate (Fig. 28A) . 4
2. Basodorsal process on cymbium distinctly curved in dorsal view (Fig. 25A) K. cammoni Basodorsal proeess on cymbium straight in dorsal view (Fig. 30A)
. 3
3. Median apophysis with small apical hook and small retrobasal process (Fig. 32A,B) K. vicoopsae Median apophysis large, dominated by hook (Fig. 29A)
K. megma
4. Tegulum with extensive unsclerotised arca and extends posteriorly over tibia(Fig. 28C. D) . . . K. ebbenielseni Tegulum with small unsclerotised area and lies within cymbium (Fig. 23A,B)
K. piligyna

Females (based on epigyne. females of K. ebbenielseni unknown)

1. Median scapeclearly constrieted anteriorly (Fig. 26D). 2 Median scape not constricted anteriorly (Fig. 24A) . . 3
2. Cleats lateral of scape (Fig. 26D) K. camnoni Cleats postcrior to scape (Fig. 13A) . . Megateggigasep
3. Scape very wide, cleats lateral of scape (Fig. 29D, 31A, C)
K. megma

Scape narrow, cleats postcrior and lateral of scape (Fig. 24A).
4. Scape narrow, hirsute (Fig. 24A).
K. piligyna Scape with large lateral fold; scape widely divided medially (Fig. 32C)
K. vicoopsae

Krukt piligyna sp. nov.
(Figs 3E, 20-24, 32E; Table 9)
ETYMOLOGY. Latin, hirsute (pili), genitalia (gyna) alluding to the diagnostic hirsute seape of females.
MATERIAL. HOLOTYPE: 1 ठ, Mt Finnigan, $15^{\circ} 49$ 'S $145^{\circ} 17$ 'E, NEQ, under rocks. 9 Noy 1974, L. Roberts. V.E. Davies, J. Covacevich, QM S31166. PARATYPES. Allotype: 18 , as for holotype but, L. Roberts, V.E. Davies, QM S31167, Mt Finnigan. $15^{\circ} 49^{\circ} \mathrm{S} 145^{\circ} 17^{\circ} \mathrm{E}, 1110 \mathrm{~m}$,
 pitfall, 28-30 Nov 1985, G.Monteith, D.Cook, QM S32963:182 \% \%, sieved litter, 21 Apr 1982, GMonteith, D. Yeates, D.Cook, QM S32962; 1 ¿’, summit, pitfall, 3-5 Dee 1990. D. Cook. G. Thompson. L. Roberts. QM S32964: $2 \delta^{\circ} \mathbf{d}^{\circ}$, summit, 28 -30 Nov 1985, G Monteith, D. Cook. L. Roberts, QM S32966; 1 8, pitfall, 19-22 Apr 1992, GMonteith, D. Yeates, D.Cook. QM S32965; 1 ठ 2 of ㅇ, site $2,15^{\circ} 48^{\circ} \mathrm{S} 145^{\circ} 17^{\circ}$ E, pitfall, 4 Dee 1990-17 Jan 1991, Qld Museum \& ANZSES, QM S32970; 1 ठ 2 ㅇ i ㅇ, site $3,15^{\circ} 48^{\circ} \mathrm{S} 145^{\circ} 17^{\prime}$ E, pitfall, 4 Dee 1990-17 Jan 1991, QM ANZSES, QM S32095; 2 和 ${ }^{\circ} 6$ 우, site $4,15^{\circ} 48^{\prime} \mathrm{S}$
$145^{\circ} 17^{\prime}$ E, piffall, 4 Dee 1990-17 Jan 1991, QLD Museum \& ANZSES, QM S32971; 1 \% $1 \stackrel{\circ}{9}$, site 5 , piffall, 4 Dec 1990-17 Jan 1991, QLD Museum \& ANZSES, QM S32969; 4 t' $\mathbf{S}^{\prime} 4$ 앙, sieved litter, 30 Nov 1985. GMonteith, D.Cook, QM S31161; 1 o 2 of, site 3, $15^{\circ} 48^{\circ} \mathrm{S} 145^{\circ} 17^{\circ}$ E, pitfall, 4 Dec 1990-17 Jan 1991. QM ANZSES, QM S31162; 1 of 1 ㅇ, stick brushing, 21 Nov 1998, G Monteith, QM S49954; 1 क 1 ㅇ, same data, QM S49958. Big Tableland, $15^{\circ} 43^{\circ} \mathrm{S} 145^{\circ} 17^{\circ}$ E, A.N.Z.S.E.S. expedition: 1 oै 1 ㅇ, flight intercept trap, $20 \mathrm{Dec} 1990-8$ Jan 1991, QM S32968; I ?, same data, QM S32967: 5
 same data but. site $5.16^{\circ} 39^{\circ} \mathrm{S} 145^{\circ} 34^{\mathrm{K}} \mathrm{E}$, pitfall, 20 Dce 1989-15 Jan 1990, QM S31132, 31131. 1 ס'. Mt Sampson, $15^{\circ} 48^{\circ} \mathrm{S} 145^{\circ} 12^{\prime} \mathrm{E}$, pitfall, 27 Dec 1990-19 Jan 1991. A.N.Z.S.E.S. cxpedition, QM S31130; 2 if o M $_{1}$ Mt Harley. $15^{\circ} 46^{\circ} \mathrm{S} 145^{\circ} 20^{\circ}$ E, 6 Nov 1974, J.Covacevich. D.Joffc, V.E.Davies, QM S32961; 1 ठ' $^{\text {. same data but pitfall, } 8 \text { Dec }}$ 1993-2 Feb 1994, L.Roberts. QM S31165; 2 ठ ס ${ }^{\circ}$, same data but 8 Nov 1995-17 Jan 1996, G Monteith. D. Cook, L. Roberts, QM S43950. All in northeastern Queensland.

DIAGNOSIS. Males differ from those of all other species in the deep retrobasal groove on the cymbium (Fig. 23B): females differ from those of all other species in the narrow hirsute epigynal scape (Fig. 23D).
DESCRIPTION. Holotypc o QM S31166. Carapace 3.72 long, 2.96 wide. Abdomen 2.92, 2.16 wide. Total length, 6.8 .

Eyes: AME:ALE:PME:PLE, 9:11:7:11. Eye group front width: back width: length, 47:69:31. Interspaces: AME-AME, 0.7; AME-ALE, 0.2; PME-PME, 1.9; PME-PLE, 1.2.
Chelicerae: $\mathrm{p}=3, \mathrm{r}=3$.
Spines: 1: fe pul strong, pld3r3; pa rl; ti p3d3r3v2.2.2.2; me p 2 r 2 v 2.2 .2 . II: fe p 2 d 3 r 3 ; pa rl; ti p2d3r3v2.2.2.2; me p3r3v2.2.2. 111: fe p2d3r2; pa rl; ti p3d2r3v2.2.2; me p3r3 v 2.2.2. IV: fep2d3rl;par1; tip2d2r2 v.2.2.2; mep3r3v7. Palp: fe pvlpld3.
Legs: scopula absent. Tibial fracture on 1 distinct, pro- and retrolaterally on 1-1V. Trochanteral notches shallow, symmetrically shaped. Claw tufts thin, narrow.
Palp (Fig. 23A-C): tibia stout with sclerotised distal collar and rounded dorsal process locking with base of eymbium; tibial apophysis moderately long triangle with basal lobe. Cymbium: scopula extends over distal half: retrobasal corner with deep cutatway area both soft and pallid, forming basal edge directed at tibial apoplysis; viewed retrolaterally bilobed with basal incursion; dorsally basal cymbium strongly narrowed, basally with heel; sclerotised ridge prolaterally with $\mathrm{c} .1 / 3$ of base; basodorsal

TABLE 9. Leg meaurements of Krukt piligyna, holotype male and allotype female.

Male	1	11	111	1 V	Palp
Femur	2.54	2.31	1.92	2.15	1.00
Patella	1.00	1.23	0.85	0.77	0.61
Tibia	2.31	1.77	1.61	1.85	0.46
Metatarsus	2.38	1.69	1.85	2.85	1.15
Tarsus	0.92	0.85	1.00	1.15	
Total	9.15	7.85	7.23	8.77	3.22
female	1	11	111	1 V	Palp
Femur	2.31	1.92	1.85	1.92	1.23
Palella	1.38	1.23	0.92	1.15	0.77
Tibia	1.85	1.85	1.46	1.92	0.69
Mctatarsus	1.46	1.61	1.46	2.23	0.85
Tarsus	0.69	0.69	1.08	1.00	
Total	7.69	7.30	6.77	8.22	3.54

process a rounded heel: paracymbial discontinuity absent but pallid glabrous cutaway. Bulb: median apophysis a large hook, hooked portion $c a$. half total length extends to adjacent to base of median apophysis: base irregular, small. Embolic origin very broad tapering quickly near tip. Membranous tegular process distinct, long, banana-like.

Allotype \circ QMS31167. Carapace 3.76 long, 2.92 wide. Abdomen 4.92, 3.80 wide. Total length, 8.8.
Eyes: AME:ALE:PME:PLE, 8:13:6:12. Eye group front width: back width: length, 55:81:38. Interspaces: AME-AME, 1.1; AME-ALE, 0.5; PME-PME, 2.4: PME-PLE, 1.2.

Chelicerae: $\mathrm{p}=3, \mathrm{r}=3$.
Spines: 1: fe pvl strong, pldırl; pa 0; ti v2.2.2.2; me v2.2.2. 11: fc pld3rl: pa 0; ti v2.2.2.2; me v2.2.2. IIl: fe p2d3r2; parl; ti p2d2r2v2.2.2; me p3r4v2.2.2. IV: fep2d3rl; parl; tip2d2r2v2.2.2; me p4r4v2.2.2. Palp: fe d3; pa 0; ti p2; ta p3.
Legs: scopula absent.
Epigine (Figs 23D, 24A): cxternally a long narrow hirsute scape for length lies between two large rounded lateral lobes with large eleats off posterior corners; scape not movable. Copulatory fossae are antcrior latcral of lobes, a broad flat duct folds posteriorly, turns anteriorly becoming broader as it passes close to ventral surface and posteriorly where it twists up to curved collar-like receptaculum; medially, dccply U-shaped ridge formed by dorsal extension of seape appears to join with insemination ducts but

FIG. 21. Spinnerets, K'rukt piligyna, sp. nov., QM S3I162, scanning electron micrographs, apical view. A, C (dorsal), E, $; ; B, D, F, \delta, A, B, A L S ; C, D, P M S ; E, F, P L S ;$ inset of E shows broad triangular fleshy colulus.
in fact is simply external. Lateral cleats have no internal connection.

DISTRIBUTION AND HABITAT. High altitude ($>700 \mathrm{~m}$) rainforest at Mt Finnigan and nearby Mts Hartley and Sampson, NE Qld.

Krukt cannoni, sp. nov.
(Figs 20, 25-28: Table 10)
ETYMOLOGY. For Lester Cannon, Senior Curator of Invertebrates, Queensland Museum, 1976-2002.

FIG. 22. Claw tufts, Krukt piligyna, sp. nov., \mathcal{F}, leg I, scanning electron micrographs. A, retrolateral view; B, axial view; C, E, ventral tapering hairs; D, scopula hairs; F, ठ tibia I photomicrograph showing crack, prolateral view.

FIG. 23. Krukt piligyna, sp. nov., ठ, A-C, ㅇ, D. A, palpal bulb, ventral view; B, palpal tibia and eymbium, retrolateral view; C. tibial apophysis, ventral view: D, epigyne, ventral view.

MATERIAL. HOLOTYPE: ठ. Mt Sorrow summit, Cape Tribulation, $16^{\circ} 06^{\circ} \mathrm{S} 145^{\circ} 26^{\circ} \mathrm{E}$, rainforest, sieved litter, 19 Oet 1980. G Monteith, QM S31390. PARATYPES. allotype 9, as for holotype, QM S31391; 2 ㅇㅇ, as for holotype, QM S31392; \%. Cape Tribulation, 3km W (Site 6), $16^{\circ} 05^{\circ} \mathrm{S} 145^{\circ} 27^{\prime} \mathrm{E}$, rainforest, sieved litter, 19 Sep 1982, G Monteith, D. Yeates, G. Thompson, QM S32958; $1 \delta^{\circ}$. Mt Halcyon, $16^{\circ} 03^{\prime} \mathrm{S} 145^{\circ} 25^{\circ} \mathrm{E}$, pittall, 22-24 Nov 1993, GMonteith. H.Janetzki, D.Cook, L.Roberts, QM S32959; $1 \%^{\circ}$, Roaring Meg valley, $16^{\circ} 04^{\circ} \mathrm{S} 145^{\circ} 25^{\circ} \mathrm{E}$, rainforest, litter, 21 Nov 1993, GMonteith H.Janetzki, QM S32960. Mt Hemmant, $16^{\circ} 07^{\prime} \mathrm{S} 145^{\circ} 25^{\prime} \mathrm{E}$, rainforest: 2 ठ' δ, pitfall, 25-27 Nov 1993, G.Monteith, H.Janetzki, D.Cook, L. Roberts, QM S32955; 1 \%.1 §, sieved litter, 25

Apr 1983, GMonteith, D.Cook, QM S32954, 32953. Mt Pieter-Botte, $16^{\circ} 04^{\prime} \mathrm{S} 145^{\circ}-24^{\prime} \mathrm{E}$, rainforest: $10^{\circ} .2$ 옹, pitfall, 21 Nov-8 Dee 1993, GMonteith, 11.Janctzki, QM S32950: 1 ǒ 1 \&, pitfall. 2-8 Dee 1993. GMonteith, H.Janctzki. QM S32956; 1 ó, 0.5km E, $16^{\circ} 05^{\prime} \mathrm{S}$ $145^{\circ} 23^{\circ}$ E, sieved litter, 5 Oct 1982, GMonteith. D. Yeates, GThompson, QM S32957.1 6., Thomton Peak, $16^{\circ} 10^{\circ} \mathrm{S}$ $145^{\circ} 23^{\circ} \mathrm{E}, 24-27 \mathrm{Sep} 1984$, G \& S. Monteith. sieved litter \& moss, 20-22 Scp 1981, GMonteith, D.Cook, QM S31170. All in NE Queensland.

DIAGNOSIS. Differs from most other species in short male palpal tibia and K. ebbenielseni and K. vicoopsae by absence of cymbial cutaway and

FIG. 24. Krukt piligına. sp. nov., \&. A, epigyne; B, vulva.
from K. ebbenielseni in normal tegulum slape and from all others in basodorsal cymbium process being hooked and from K. vicoopsae in lacking a basal tibial apophysis lobe and having the lateral epigyne lobes pointed.

DESCRIPTION. Holotype ${ }^{\delta}$. Carapace 3.84 long, 2.92 wide. Abdomen 2.96, 2.08 wide. Total length, 7.0.
Colour: carapace yellow brown with darker areas on margins, caput, interstrial ridge posterior lateral of PLE \& behind AME. Legs with 3 incomplete rings on lemora, one on patellac, two on tibiae, none on metatarsi. Abdomen dorsally mottled orange with irregular ovoid pallid area anteriorly, mottling darker posteriorly. Ventrally pallid with few transverse dark areas. Sternum fawn with dark band medially and on margins; elsewhere pallid.

Eyes: AME:ALE:PME:PLE, 8:6:13:11. Eyc group front width: back width: length, 50:67:31. Interspaces: AME-AME, 0.7; AME-ALE, 0.3; PME-PME, 1.9; PME-PLE, I.8.
Sternum: narrow, broken, ventral sternal extension.
Spines: I: fe pul strong, pld3r3; pa rl; ti p2d3r3v2.2.2.2.0; me p3r3v2.2.2. 11: fe pld3r3; parl; ti p2d3r3v2.2.2.2.0; me p3r3v2.2.2. Ill: fe p2d3r3; pa rl: ti p2d2r2v2.2.2; me p1.2.2r2.1.2v2.2.2. IV: fe p2d3rl; pa rl; ti p2d2r2v.2.2.2; me p5r2.2.2v2.2.2. Palp: fe pldi.2. rest 0 .
Legs: scopula absent; tibial fracture on I-IV prolaterally and retrolatcrally distinct; trochanteral notches shallow.
Palp (Figs 25A-C, 26A-C): tibia ca. $1.5 \times$ longer than wide, barrel-like with sclerotised collar (as in all species) around distal edge; tibial apophyis a large but short twisted blunt process, retroventrally with small separate (not on same lobe) digitiform lobe. Cymbium: scopula extends just over half: basodorsal process viewed from above (back of cymbium) a distinet triangular extension narrowing to small teat clcarly hooked to retrolateral corner, below basodorsal process clearly sclerotised. Paracymbial discontinuity retrobasally with small sclerotised corner. Bulb: median apophysis base small, short, rectanguloid, converging quiekly to large apical hook; cmbolus origin large, tapering quickly to narrow scoop.
Allotype 9 . As for male except as follows: Carapace 4.04 long, 3.20 wide. Abdomen 4.48 , 3.16 wide. Total length, 4.8.

Colour: carapace brown with dark brown markings, legs strongly banded. Abdomen dorsally dark mottled with paler oval area anteriorly, ventrally darkly mottled.
Eves: AME:ALE:PME:PLE, 9:13:9:13. Eye group front width: back width: length, 59:82:38. Interspaces: AME-AME, 1.0; AME-ALE, 0.3; PME-PME, 1.7; PME-PLE, 1.2.
Spines: I: fe pul strong, pld|r1; pa 0; ti v2.2.2.2; me v2.2.2. II: fe p2d3r1; pa 0 ; ti v2.2.2.2; me v2.2.2. 111: fe p3d3r2; par1; ti p2d2r2v2.2.2; me p1.2.2r2.1.2v2.2.2. IV: fe p2d2rl; pa rl; ti p2d2r2v1.2.2; me p5r2.2.2v6 paired. Palp: fe d1.2; pa 0; ti p2r1; ta p3.
Legs: scopula absent; claws with 3-4 tecth; tufts united; tarsal rod at basal $2 / 5$.

FIG. 25. Krukt cannoni, sp. nov., ס', palpal tibia, cymbium and bulb; dorsal (A), retrolateral (B), and ventral (C) views.

Epigyne (Figs 26D, 27C-E): a broad domed central seape widening at mid-basal area and lateral grooves adjacent to diagonal ridge.

TABLE 10. Leg mcaurements of Krukt cannoni, holotype male and allotype female.

Male	1	11	III	1 V	Palp
Femur	2.31	2.23	2.31	2.61	1.08
Patella	1.00	1.08	1.00	1.08	0.61
Tibia	2.46	2.07	2.07	2.69	0.54
Metatarsus	2.31	2.15	1.77	3.38	1.00
Tarsus	1.00	0.92	1.00	1.38	
Total	9.08	8.45	8.15	11.14	3.23
Female	1	11	111	1 V	Palp
Femur	2.23	2.38	2.00	2.31	1.23
Patella	1.31	1.23	1.15	1.23	0.69
Tibia	2.15	1.92	1.54	2.38	0.77
Metatarsus	1.85	1.77	1.92	3.08	1.00
Tarsus	0.92	0.85	1.00	1.15	
Total	8.46	8.15	7.61	10.15	3.69

DISTRIBUTION AND HABITAT.High altitude ($>700 \mathrm{~m}$) rainforest at Mt Sorrow, Roaring Meg Valley, Mt Hemmant, Mt Pieter-Botte, Mt Haleyon, west of Cape Tribulation, and Thornton Peak, NE Qld.

Krukt ebbenielseni sp. nov.

(Figs 20, 28; Table 11)
ETYMOLOGY. For the late Dr Ebbe Niclsen.
MATERIAL. HOLOTYPE: δ^{\prime}, Thomton Peak, $16^{\circ} 10^{\circ} \mathrm{S}$ $145^{\circ} 23^{\circ}$ E, NEQLD, $24-27$ Sep 1984, G \& S. Monteith, QM S31169. PARATYPES: δ^{\prime}, Thomton Pcak, $16^{\circ} 10^{\prime} \mathrm{S}$ $145^{\circ} 22^{\circ} \mathrm{E}, 955 \mathrm{~m}$, Nov 1975, M. Gray, AM KS9163.

DIAGNOSIS. Males are unique in the genus in the posteriorly produced but ventrally extensively unselerotised tegulum.

DESCRIPTION. Holotype © . Carapace 3.68 long, 2.80 wide. Abdomen 2.80, 1.92 wide. Total length, 6.8.
Eyes: AME:ALE:PME:PLE, 8:11:7:12. Eye group front width: baek width: length, 48:70:34.

FlG. 26. Krukt camnoni, sp. nov., ठ, A-C, \& D. A, palpal bulb, ventral view; B, palpal tibia and cymbium, retrolateral view: C , tibial apophysis, retrolateral view; D , epigyne, ventral view.

Interspaces: AME-AME, 0.7; AME-ALE, 0.3: PME-PME, 1.9; PME-PLE, 1.2.
Spines: I: fe pol strong. pld3r2; pa r1; ti p2d1r3v2.2.2.2: me p1r1v2.2.2. 11: fe p2d3r3; pa rl; ti p 2 d 3 r 2 v 2.2 .2 .2 ; me plr3v2.2.2. Ill: fe p3d3r3; parl; ti p2d2r2v2.2.2; me p4r5v2.2.2. 1V: fe p3d3rl: pa rl; ti p2d2r2v.2.2.2: me p5r6v2.2.2.2. Palp: fe pld2r1.
Legs: tibial fracture prolaterally and retrolaterally distinct on I \& II. Trochanteral notehes: shallow, I, Il deeper in back of notch to front; III, IV symmetrical.

Palp (Fig. 28A-E): tibia stout with rounded distal heels prolaterally and prodorsally; tibial apophysis large, seooped with ventral corner folded. Cymbium: scopula extends to distal half; retrobasally indented: basodorsal process broad, rounded; paracymbial discontinuity absent. Bulb: median apophysis large, wide with broad, apical hook, base roughly crescentic; small then becomes extensive; embolus arises medially off prolateral side.
Female: unknown.

FlG. 27. Krukt cannoni, sp. nov. A, B, ơ palpal tibia and cymbium base, relrolateral (A) and retrodorsal (B) views. C-E,,$~$: C, D, epigyne, photomicrograph (C); E, vulva.

DISTRIBUTION AND HABITAT.High altitude ($>700 \mathrm{~m}$) rainforest at Thornton Pcak, NE Qld.

TABLE 11. Leg measurements of Krukt ebbenielseni, holotype male.

	1	11	111	IV	Palp
Femur	2.69	2.54	2.61	3.31	1.54
Patella	1.23	1.23	1.15	1.23	0.61
Tibia	2.92	2.54	2.00	2.92	0.69
Metatarsus	2.69	2.31	2.3 I	3.46	1.38
Tarsus	1.08	1.15	1.00	1.38	
Total	10.61	9.77	9.07	12.30	4.22

Krukt megma sp. nov.
(Figs 20, 29-31; Table 12)
ETYMOLOGY. An arbitary combination of letters.
MATERIAL. HOLOTYPE: o , Mossman Bluff Track, $5-10 \mathrm{~km}$ W Mossman (Site 5), $16^{\circ} 28^{\circ} \mathrm{S} \quad 145^{\circ} 22^{\circ} \mathrm{E}$, NEQLD, rainforest, pitfall, 16-30 Dec 1988, GMonteith, G. Thompson, ANZSES Expedition, QM S16650. PARATYPES. Allotype $\%$, as for holotype, QM S58221; 1 ठ. Mossman Bluff Track, $5-10 \mathrm{~km}$ W Mossman (Site 1), $16^{\circ} 28^{\prime} \mathrm{S} 145^{\circ} 22^{\circ} \mathrm{E} .250 \mathrm{ml}$, flight intcrcept trap. 1-16 Jan 1989, GMonteith, GThompson, ANZSES Expedilion, QM S31129; 1 \&, same data but (Site 4), $16^{\circ} 25^{\prime}$ S $145^{\circ} 20^{\circ}$ E. $800-1000 \mathrm{~m}$, pitfall, 20 Dec 1989-15 Jan 1990, QM S32882; 3 ठ' ठ 1 ㅇ, same data bul, site $5,16^{\circ} 39^{\prime} \mathrm{S}$ $145^{\circ} 34^{\prime} \mathrm{E}, 760 \mathrm{~m}$, pitfall, 20 Dec 1989-15 Jan 1990, QM S31132, S31131.

FIG 28. Krukt cbbenielseni, sp. nov., ô palpal tibia, cymbium and bulb; dorsal (A), ventral (B, C), retrolateral views (D), tibial apophysis, retrodorsal view (E).

DIAGNOSIS. Males are easily separated from those of other congeners by the very large central median apophysis; females are also casily recognised by the short wide parallel-sided seape in the epigyne.

DESCRIPTION. Holotype © . Carapace 3.52 long, 2.80 wide. Abdomen 5.00 long, 3.88 wide.
Colour in alcohol. Carapace orange brown with darker margins in posterior half; centrally with reticulate dark areas forming pallid hemispheres along margin. Eye region not dark. Chelicerae yellow brown with 2 dark stripes. Abdomen dorsally yellowish with dark anterior shoulders and more mottling in posterior half with large almost entirely pallid anterior area.
Carapace. AME on common tuberele overhanging elypeus.
Spines. I: fe pvipld3r2; pa 0; ti p2dlr3v2.2.2.2; me p2r2v2.2.2. II: fe p2d3r2; pa0; ti p3d2r3v2.2.2.2: me p2r2v2.2.2. III: fe p2d3r2; pa0; ti 2 2d2r2v2.2.2; me pl.2.2r2.1.2v2.2.2. 1V: p3d3rl; pa rl; ti p2d2r2v2.2.2; me piplplp2rl.1.2.2v2.2.2. Palp: fe pld1.2; rest, 0 .

Palp (Figs 29A-C, 30A-C). Tibia short, barrel-shaped with large blade-like RTA at half-length; tibia distally with collar and single dorsal lobe; collar absent from retroventral edge. Cymbium with narrow dorsal scopula; very narrow base/junction with tibia; in posterior half, eymbium narrows strongly to basodorsal overhanging process. Tegulum with small marginal basal component, distally large plate. Embolus with very large wide base, tapers quiekly to narrow tip; a small triangular lamella at base of embolus; embolus entirely mobile. Median apophysis a large, eurved hook narrowly attached to tegulum and mobile.
Allotype 오. Colour in alcohol. Carapace like male but orange brown with more extensive darker areas. Abdomen dorsally with darker shoulders, anterior shields distinet. Legs red brown; dark bands on distal femora, tibiae and metatarsi; coxae ventrally dark distally. Bipartite dark shadow centrally on sternum with dark spots marginally opposing coxac.
Eyes. AME:ALE:PME:PLE, 7:9:5:8. Eye group front width: back width: length, 41:57:25.

F1G. 29. Krukt megma, sp. nov., scanning eleetron micrographs. A-C, ठ palp; A, bulb, ventral view; B, C, patella, tibia (C), eymbium and bulb (B), ventral view. D, $\%$ epigyne.

Interspaccs: AME-AME, 0.7; AME-ALE, 0.4; PME-PLE, 1.9; PME-PME, 1.6.
Legs. Scopula absent. Tarsal rod at basal third. Spines. Strong proventral femoral spine on I. 1: fe pvlpld2r1; pa0; ti v2.2.2.2; me v2.2.2. 11, as 1 but
fe p2d3r2. I11: fc p2d3r2; pa0; ti p2d2r2v2.2.2; me pl.2.2r2.1.2v2.2.2. 1V: fc p2d3rl; parl; ti p2d2r2v2.2.2; mc pl.1.1.2.r2.2.2v2.2.2. Palp: fe d1.2; pa0; ti p2d1; ta p2.1.

FIG 30. Krukt megma, sp, nov., A-C, o palpal tibia and cymbium. A, dorsal view; B, relrolateral view; C, inclined dorsal view.

Claws. Paired claws with $2-3$ teeth. Palpal claw long, 5 teeth, shortest basally.
Spinnerets. All on protuberant base. PMS with 1 line of 3-4 spigots dorsally and 4-6 large spigots apically.

TABLE 12. Leg measurements of Krukt megma sp. nov. allotype female.

	1	II	111	1 V	Palp
Femur	2.24	1.92	2.08	2.52	1.16
Patella	1.20	1.16	0.96	1.00	0.44
Tibia	1.92	1.76	1.32	2.00	0.64
Metatarsus	1.56	1.48	1.64	2.72	
Tarsus	0.76	0.60	1.12	1.12	0.80
Total	7.68	6.92	6.84	9.36	3.04

Epigune (Figs 29D, 31A-C). A low flattened plate with long biconvex grooves and small lateral cleats. Vulva similar to K. piligyna.

DISTRIBUTION AND HABITAT. Mossman Bluff Track, $5-10 \mathrm{~km}$ W Mossman, in rainforest at $250-1000 \mathrm{~m}$ altitude, NE QId.

Krukt vicoopsae sp. nov.

(Figs 20, 32A-D,F-G. 33A-D; Table 13)
ETYMOLOGY. For Vicioria Coops, Library Technician, Queensland Museum, 1981-2002.
MATERIAL. HOLOTYPE: ${ }^{\circ}$, Mı Boolbun Sth, $15^{\circ} 57$ 'S $145^{\circ} 08^{\circ}$ E, rainforess, litier, 6 Nov 1995. G Monteith, QM S31126. PARATYPES: allotype if Mt Boolbun Sth, $15^{\circ} 57^{\circ} \mathrm{S} 145^{\circ} 08^{\circ} \mathrm{E}$, rainforest, 4-6 Nov 1995, G. Monteith, D. Cook, L. Roberts, QMS31128; 1 i, same data but litter, 6 Nov 1995, G Monteith, QM S38158; 1 ㅇ, same data but dung. pitfalls, \& intercepts, 4-6 Nov 1995, G Monteith, QM S31127; 1 ס', M1 Miscry, summit, site 3, $15^{\circ} 52^{\prime}$ S $145^{\circ} 14^{\prime}$ E, flight intercept trap, 6 Dec 1990-17 Jan 1991, Qld Museum \& ANZSES Expedition, QM S40893. All in north-easiem Queensland.

DIAGNOSIS. Males differ from those of Krukt megma in the much smaller tibial and median

FIG. 31. Krukt megma, sp. nov., \& . A, C (axial view), cpigync; B, vulva.

FIG. 32. A-D, F-G Krukl vicoopsae, sp. nov. A-D, seanning electron mierographs; A, B, D, ó palp; A, bulb,
 piligina, \circ, spinnerets, ventral showing extended common base.

FIG. 33. A-D, Krukt vicoopsae, sp. nov. A, B, ơ tibia I showing basal groove marking crack; C, scopula on dorsal cymbium; D, prolateral femur I showing proventral spine. E, F, Megateg elegans, sp. nov., scopula hairs on dorsal cymbium.

FIG. 34. A-D, Krukt vicoopsae, sp. nov., ö, scanning electron micrographs. A, trochanteral notch, ventral view; B, patella and tibia I. prolateral view, showing elongate apical seta on patella; C, tibia and metatarsus I, ventral view; D, palpal tibia, bulb and cymbium showing basodorsal cymbial process.
apophyses and females differ from those of K. piligyna in the broad glabrous epigynal seape.

DESCRIPTION. Holotype of QMS31126.
Carapace 4.16 long, 3.28 wide. Abdomen 3.52, 2.44 widc. Total length, 8.0.

Eyes: AME:ALE:PME:PLE, 9:11:9:12. Eye group front width: back width: length, 54:47:37. Interspaces: AME-AME, 0.7; AME-ALE, 0.5; PME-PME, 1.7; PME-PLE, 1.0.

Spines: 1: fe pv1 strong, p3d3; pa rl; ti p 2 d 2 r 2 v 2.2 .2 .2 ; me p 2 r 2 v 2.2 .2 . II: fe pvl strong, p2d3r2; pa rl; ti p3d3r3v2.2.2.2; me p3r3v2.2.2. 111: fe p3d3r2; pa rl; ti p2d2r2v2.2.2; me p3r4 v 2.2.2. IV: fe p2d3rl: parl; ti p2d2r2 v.2.2.2; me p4r3v6 unpaired. Palp: fe p1d3.
Legs: scopula absent. Tibial fracture: 1-IV, prolaterally distinct, not evident retrolaterally. Trochanteral notches shallow, deeper in back of noteh to front.

TABLE 13. Leg measurements of Krukt vicoopsae, holotype male and allotype female.

Male	1	11	111	IV	Palp
Femur	3.15	3.15	2.61	3.23	1.46
Patella	1.31	1.38	1.00	1.15	0.85
Tibia	3.15	2.77	2.31	3.08	0.77
Metatarsus	3.00	2.61	2.61	4.23	1.31
Tarsus	1.23	1.08	1.00	1.46	
Total	11.84	10.99	9.53	13.15	4.39
Female	1	11	111	$1 V$	Palp
Femur	2.69	2.61	2.38	3.08	1.08
Patella	1.38	1.38	0.92	0.77	0.61
Tibia	2.31	2.00	1.61	2.31	0.77
Metatarsus	1.92	2.00	1.69	3.08	1.08
Tarsus	0.92	0.85	0.92	1.00	
Total	9.22	8.84	7.52	10.24	3.54

Palp (Fig. 32A,B): tibia stout but longer than wide, medially barrel-shaped, glabrous area on pro-distal ventral corner; low sclerotised collar on proventral corner, and prolateral and triangular collar process. Tibial apophysis basally broad, twisting in apex, axe-like proccss with face of axe prolateral, with edge pointing ventrally. Cymbium: distinct, broad, sclerotised ridge on retroventral corner; scopula extends to distal $3 / 5$ ths: from above, a gradual teat-like process pointing posteriorly; basodorsal process horn-like; paracymbial discontinuity a slight mound. Bulb: mcdian apophysis a broad, simple hook, with small irregular basc; embolus originates basal orthogonally and tapers gradually to long fine tip; hyaline blade-like process above base of embolus.
Allotype \circ QMS31128. As for male cxcept as follows. Carapace 4.52 long, 3.40 wide. Abdomen $7.60,5.12$ wide. Total length, 12.8.
Eyes: AME:ALE:PME:PLE, 11:14:8:14. Eye group front width: back width: length, 63:89:40. Interspaces: AME-AME, 0.5; AME-ALE, 0.5; PME-PME, 2.1; PME-PLE, 1.1.
Spines: I: fe pvl strong. pldl; pa 0 ; ti 2.2.2.2; me v2.2.2. 1I: fe p2d3rl; pa 0 ; ti v2.2.2.2. me v2.2.2. III: fe p2d3r2; pa rl; ti p2d2r2v2.2.2; me p4r4v2.2.2. IV: fep2d3rl; parl;tip2d2r2v5; mc p5r6v7. Palp: fe pld2; pa 0; ti p2; ta p3r1.
Legs: scopula absent: paired claws with 2-3 teeth. Epighue (Fig. 32C.F,G): with broad medial ridgc with distinet partial division. Ridge ends at centre of selerotized ovoid area with lateral ridges overlapping ends of medial ridge. Vulva like K.

FIG. 35. Birrana and Kilyana, distribution map.
piligyna but posteriorly so large as to almost conceal anterior portion of spermathecae.

DISTRIBUTION AND HABITAT. High altitude ($>700 \mathrm{~m}$) rainforest at Mt Boolbun South, NE Qld.

Birrana gen. nov.
TYPE SPECIES. Birrana bulburin sp. nov.
ETYMOLOGY. Aboriginal birrana, throwing stick alluding to the tarsal rod, the gender is feminine.

DIAGNOSIS. Differs from Kilyana in the presence of a tarsal rod and from Megateg and Kirkt in the shorter rod; males differ from those of Megateg in the short male palpal tibia and small RTA and of Krukt in the small RTA and extensive tegulum; females differ from those of Megateg in the presence of a median scape, from those of Krukt in the absence of basolateral clcats, and from those of Huntia in having claw tufts and lacking lateral teeth.

DESCRIPTION. As for species.

FIG. 36. Birrana bulburin, sp. nov., A-E, ©. A, B, palpal tibia, eymbium \& bulb; ventral (A) and retrolateral view (B); C, palpal tibia, retrolateral view; D, tarsus I showing claws \& claw tufts with ventrodistal hairs. E, if epigyne and vulva (inset).

REMARKS. Birrana is somatically very similar to Megateg but the male palpal bulb shows strong similarities to Kilyana hendersoni, sp. nov.
INCLUDED SPECIES. Birrana bulburin sp. nov.

Birrana bulburin sp. nov.

(Figs 35-38; Table I4)
ETYMOLOGY. Aboriginal word for the type locality.
MATERIAL. HOLOTYPE: ठ̛, Bulburin SF, $24^{\circ} 30^{\circ}$ S $151^{\circ} 35^{\circ}$ E, SE.Q, rainforest, pitfall, I Jun-5 Oet 1974, G\& S. Monteith. QM S31408. PARATYPE. Allotype, 9 , as for holotype, QM S31409.

DIAGNOSIS. As for genus.
DESCRIPTION. Holotype ô. Carapace 3.48 long, 2.80 wide. Abdomen 2.68, 2.40 wide.
Colour: carapace yellow brown with dark margins on undulating inner edge; eentral region darker with black margins laterally and posteriorly, dark margins near eaput edge and diagonal from PLE. Abdomen dorsally fawn with dark shoulders, darker areas on abdomen light, mottled as pattern evident. Legs with double bands on distal femora, distal patellae, tibiae and metatarsi but bolder on 111, IV. Abdomen ventrally with irregular dark fleeks centrally. Sternum yellow-brown with slight radial tip shadows. Blaek stripes down ehelicerac; reddish brown dagger mark anterior on abdomen.
Eyes: almost in 3 rows, 24 2. AME:ALE: PME:PLE, 6:6:8:8. Front of ALE eut back edges of AME; front edge of PLE behind baek edge of PME; cyes of baek row largest. AM-AM $=6$, $\mathrm{AM}-\mathrm{AL}=6, \mathrm{PM}-\mathrm{PM}=8, \mathrm{PM}-\mathrm{PL}=9 . \mathrm{AL}-\mathrm{PL}=5$. Group front width: backwidth: length, 37:47:21 ALE eloser to PLE than AME.
Chelicerae: $\mathrm{r}=3$ small.
Spines. I: fe pv1pld3rl; pa rl; ti p2r3pv5rv4; me p2r2v2.2.2. 11 fe, p2d3r2; pa r1; ti p2r3pv5rv4; me p3r3v2.2.2. Ill: fe p4d3r2; parl; tip 2 d 2 r 2 v 2.2 .2 ; me pl.2.2r1.1.2v2.2.2. 1 V : fe p2d3rl; pa rl; ti p2d2r2v.2.2.2; me pl.1.1.1.1rl.1.1.2v2.2.2. Palp: fepld1.2.
Legs: scopula absent. Tarsal rod at basal $1 / 5$ th, low on I, II; raised, distinct on III, IV. Tibial craek 1-IV prolateral and retrolateral distinet. Troehanteral notches shallow, symmetrieal, $3 \times$ wider than deep but beeoming shallower from 1 V to almost indistinet on I.
Claws: with 2 long and 1 short tooth on all.
Abdomen: anterior face with pair of coneave 'scutes'.
Palp (Figs 36A,B, 37A,B): tibia with only small eonical mound retrolaterally, most distinet dorsally. Cymbitur: asymmetrieally folded to form short shallow groove on retro-apieal eorner; margin wide, distally narrow elsewhere with thin darkly selerotised retromargin; probasally with distinet rounded lobe dorsal seopula for distal $1 / 3$. Tegulum mirrored C -shape, deep basally with short thorn opposite base of median apophysis. Median apophysis a reetanguloid scoop with a small twisted pair of hooks, twisted in opposed planes with (bivalve) shell-like translueent shield at its retrobase; median apophysis free, surrounded by tegular ring distal

FIG. 37. Birrana bulburin. sp. nov., A, B, ơ palpal tibia, cymbium \& bulb; A, with patella, ventral view; B, retrolateral view; C, \& vulva.
of tegulum is weakly selerotised. Subtegular tongue narrow, transverse with long sclerotised groove behind cmbolus. Embolus originates proapically in gradual eurve to retro-eorner opposite cymbial groove.
Allotype ${ }^{\circ}$. Carapace 4.00 long, 3.20 wide. Abdomen 4.40, 3.68 widc.
Colour: As male but legs more boldly banded, most evident mottling on ventral femora. Deep Y-shaped dark mark on sternum, inner eomers and edges of eoxac dark.
Chelicerue: 3p, 3r.
Eves: AME: ALE: PME: PLE, 4:4:6:6. Front of ALE well behind baek of AME. Front edge of PLE is behind back of PME. Interspaces: $\mathrm{AM}-\mathrm{AM}=1.3 ; \mathrm{AM}-\mathrm{AL}=1.8 ; \mathrm{PM}-\mathrm{PM}=2.8$; PM-PL=2.5; AL-PL=2.8. Group front width: baek width: length, $34: 44: 18$.
Legs: scopula weak to absent on tarsi 1, 1I. Tarsal rod low on I, a distinet lobe on IV. Claw tufts strong, similar on all.
Spines: I: fe pulpldi; pa 0; ti pv5rv4; me v2.2.2. 11: as for I but fe pldi. III: fe p2d2rl; parl; ti p2d1r2v2.2.2; me p2.1.2rl.2.2v2.2.2. 1V: fe p2d2r1; pa r1; ti p2d2r2v5; me p1.1.1.2rl.1.2.2v7. Palp: fe d1.2; pa 0 ; ti p2d1; ta p3dırl.

FIG. 38. Birrana bulburin, sp. nov., ठ. A, tarsus 1 showing claws \& tarsal rod (B), retrolateral view.

Claws: with 2-3 short teeth on palp \& legs.
Epigyne (Fig. 36E): broad, ovoid with wide, transverse recurved ridges posteriorly, lateral ovoid depression and short broad posterior median ridge; internally, a short broad lobc folding back on itself.

DISTRIBUTION AND HABITAT. Rainforest at Bulburin State Forest, SE Qld.

CLADISTICS. Birrana is considered the sister group of Megateg and Krukt with which it shares the tarsal rod albeit clearly shorter. Huntia murrindal also possesses a tarsal rod but without males the homology of the rod cannot be established. Baehr (2003) found a similar overall pattern in Tropasteron with unresolved relationships of the Wct Tropies specics having a sister group in the Eungella rcgion.

BIOGEOGRAPHY. For some spider groups, the Bulburin forests are where northern taxa reach their most southern and disjunct distribution and the northern limit of some southern taxa. Baehr (2003) found that in the Zodariidac, that point was at more northern at Eungclla, west of Mackay.

TABLE 14. Leg measurements of Birrana bulburin, holotype male and allotype female.

Male	1	11	111	IV	Palp
Femur	2.00	2.07	2.00	2.23	1.15
Patella	1.00	1.08	1.00	1.00	0.54
Tibia	2.23	1.77	1.46	2.00	0.54
Metatarsus	1.85	1.61	1.61	2.61	0.92
Tarsus	0.85	0.77	0.69	1.08	
Total	7.93	7.30	6.76	8.92	3.15
Female	1	11	111	$1 V$	Palp
Femur	2.07	2.00	2.00	2.38	1.08
Patella	1.23	1.08	1.00	1.31	0.61
Tibia	1.92	1.69	1.31	2.00	0.69
Metatarsus	1.61	1.31	1.46	2.46	0.92
Tarsus	0.77	0.92	0.77	1.00	
Total	7.60	7.00	6.54	9.15	3.30

Kilyana gen. nov.
TYPE SPECIES. Kilyana hendersoni, sp. nov.
ETYMOLOGY. A randon combination of letters; the gender is masculine.

DIAGNOSIS. Differs from Krukt, Megateg, and Birrana in the absence of a tarsal rod and from Huntia Gray \& Thompson, 2001 in the presence of claw tufts and only two claws.

DESCRIPTION. As for Megateg but: Legs. Scopula present and usually distinct on tarsi I-IV of femalcs, but only weak on metatarsi I, II. Malcs have scopula on palpal cymbium dorsally and in some species also tarsi. All pedal tibiae basally cracked. 2 claws; strong separate claw tufts; with additional cluster of finely fimbriate hairs in diamond-shaped area below claws. Tarsal organ set at distal quarter of tarsus, low with ovoid apcrturc. Bothria with 6 transverse ridges; trichobothria in single irregular linc on tarsi.
Spines. Females, legs I, II: tibia proventrally 5, retroventrally 4 thick spines on raised based; metatarsi with 3 pairs of strong spines ventrally. Male Palp. Tibia smaller than patella; tibial apophysis weak to absent, single to tripartite, sometimes simply a long deep groove, apophyses retrolateral to retrodorsal in position. Cymbium with dorsal scopula, apically truneate and asymmetrical and forming a channel retrodistally in which cmbolus lies. Tegulum large, roughly mirrored L-shape and ventral. Median apophysis large, frcc and sometimes with conducting groove along distal cdge; in some specics a
weakly selerotised spine-like process arises retrobasally beside median apophysis. Embolus originates probasally as flattened cordate plate and quiekly tapers to grooved whip traversing bulb but without conductor; a subtegular tongue-like conducting groove lies distal and parallel to embolus. In females, the enlarged base of the embolus can be found broken off ectally in copulatory groove. In Kilyana ltendersoni, an additional selerite, also mapping the embolus, has long filiform lateral hairs.
Epigyne: basically a flattened plate with transverse copulatory groove; vulva simple C-shaped or S-shaped.
Spinnerets: PMS of females dorsally with long row of spigots. Colulus broad triangular fleshy and hirsute.

DISTRIBUTION AND HABITAT. Rainforests of SE Qld and N NSW.

INCLUDED SPECIES (All new). K. bicarinatus; K. campbelli; K. corbeni; K. dougcooki; K. eungella; K. hendersoni; K. ingrami; K. kroombit; K. lorne; K. obrieni.

CLADISTICS. Two groups are readily evident in Kilyana. The conformation of the male palpal bulbs and tibial apophyses in K. corbeni and K. ingrami are very similar: synapomorphies are the large single, scooped, sail-like median apophysis (e.g., Fig. 49A) and tripartite tibial apophysis (e.g., Fig. 49F). The second group includes K. bicarinatus, K. hendersoni, K. kroombit, and possibly K. Iorne. Their synapomorphy is that the tibial apophysis is simply a long retrolateral groove. To some extent, the tibial apophyses of K. obrieni and, to a lesser extent, K. campbelli are similar in that the processes form a broad open valley which could be considered homologous with the groove. That latter wider group shares the presenee of a bipartite median apophysis with the second lobe flexibly joined to the base of the main lobe. The presence of long groove on the distal edge of the median apophysis (Figs 43B, $49 \mathrm{C}, \mathrm{D}$) of K. bicarinatus and K. ingrami in which the embolus lies is considered a conductor analogue and homoplasious within the group. To maintain otherwise would require many homoplasies in K. corbeni and K. ingrani which differ primarily in the presence of the groove. The tibial apophysis of Birrana is very subtle and may be taken to be a reduced form of the groove. However, a parallelism would be required to explain the tarsal rod in Birrana (albeit shorter) and Megateg plus Krukt. The form of the male
palpal bulb of Birrana also shares the sausage-shaped transverse tegulum and the elongate transverse embolus. At present, these are considered parallelisms. Hence, the eladogram of Kilyana is:
(corbeni-ingrami) (dougcooki((cumpbelli-lorne-obrieni) (bicarinuus-hendersoni-kroombit))).

KEY TO THE SPECIES OF KILYANA

Males (using palp; males of Kilyana eungella unknown)

1. Retrolateral tibial apoplysis weak or a longitudinal groove (Figs 4IC, 43C, 47E)
Retrolateral tibial apophysis with 3 strong processes, one with or without large apical spine (Figs 45E, 46C, 49E) 6
2. Retrolateral tibial apophysis a groove for length of tibia (Figs $41 \mathrm{C}, 43 \mathrm{C}, 51 \mathrm{D}$)
Retrolateral tibial apophysis not a groove but a pair of short convergent spines separated by depression (Fig. 47E)
K. dougcooki
3. Median apophysis masssive, dominant and apically bifid (Fig. 43A)
K.bicarinatus

Median apophysis small, much smaller than tegulum (Figs $41 \mathrm{~A} .51 \mathrm{~A}, 53 \mathrm{~A}$)
4. Basal half of embolus eradled by long filamentous process (Fig. 41B) K. hendersoni Basal half of embolus without juxtaposed long filamentous process (Fig. 53A)
5. Retrolateral tibial apophysis with distal spinose process adjacent to eymbial groove (Fig. 53D, E). . . . K. lorne Retrolateral tibial apophysis distally with truncate aspinose process (Fig. 51C) K. kroombit
6. Median apophysis a large seooped plate (Figs 46A, 49A)

Median apophysis not large and scooped (Figs 45D. 54A)
7. Median apophysis with distal edge deeply grooved (Fig. 49C) . K. iugrani Median apophysis without groove on distal edge (Fig. 46B). K. corbenii
8. Median apophysis a large eentral dominant complex process (Fig. 54A-C) K. obrieni Median apophysis a small retrolateral hook (Fig. 45A,D)
K. campbelli

Females (using epigyne; females of K. campbelli unknown)

1. Medial eopulatory ridge wide, distinel (Figs 42A, 44B). 2 Medial copulatory ridge short or indistinct (Figs 52A, 55B).
2. Medial eopulatory ridges form Vee (Fig. 44B) . K. bicarinatus
Medial copulatory ridge straight, recurved, or paired lateral procurved ridges.

3
3. Medial copulatory ridge straight with large lateral lumens K. hendersoni Medial copulatory ridge reeurved, or paired lateral procurved ridges.
4. Medial copulatory ridge single and recurved 5

Copulatory ridges paired lateral and procurved 6
5. Medial copulatory ridge deeply rccurved (Fig. 46D)
K. corbeni

Medial copulatory ridge not so recurved (Fig. 50A,B,D)
6. Copulatory ridges decp, form semicircles (Fig. 47F): vulva ducts convoluted (Fig. 47G) K. dougcooki Copulatory ridges less dcep not so rccurved (Fig. 48C, D); vulva ducts simply form overlapping circle (Fig. 48A,B)
. K. emngella (Fig. 52C) K. kroombit Medial copulatory ridge short, straight (Fig. 55B)
K. obrieni

Kilyana hendersoni sp. nov.
(Figs 1, 35, 39-42; Table 15)
ETYMOLOGY. The specific epithet is a patronym in honour of Dr lan Henderson, who kindly sponsored the rescarch of the Queensland Museum.
MATERIAL. HOLOTYPE: © , Upper Brooktield, $27^{\circ} 30^{\prime} \mathrm{S} 152^{\circ} 55^{\circ} \mathrm{E}, \mathrm{SE} . \mathrm{QLD}$, rainforest, litter, 1 Nov 1981 , R. Raven, V. Davies, QM S31340. PARATYPES: Mt Glorious, $27^{\circ} 20^{\circ} \mathrm{S} 152^{\circ} 46^{\circ} \mathrm{E}$, rainforest: I ㅇ, sicved litter, 20 Sep 1979, G Monteith, QM S32984; I \& V.E. Davies, QM S32991; 1 9. flight intercept trap, Jan-Mar 1982, A. Hiller. QM S32989; © , barracks, $27^{\circ} 18^{\circ} \mathrm{S} 152^{\circ} 45^{\circ} \mathrm{E}$. pitfall \& intereept traps, 7 Dee 1991-6 Mar 1992, G Monteith, QM S43399; 2 ód, 13 Apr-26 May 1983,
 rainforest, pitfall, 29 Nov 1991-8 Jan 1992, D.J. Cook, QM S30305: 1° ㅇ, Mt Nebo, $27^{\circ} 23^{\prime} \mathrm{S} 152^{\circ} 47^{\circ} \mathrm{E}$, ex mud wasp nest, 28 Dee 1979, H. Evans, QM S32732; 1 ․ Mi Nebo, $1 / 2$ way down track in Reserve, $27^{\circ} 24^{\circ} \mathrm{S} 152^{\circ} 47^{\circ} \mathrm{E}$, Araucaria notophyll vineforest, Dec 1980, A.Rozefelds, QM S39049. Upper Brookficld, $27^{\circ} 30^{\circ} \mathrm{S} 152^{\circ} 55^{\circ} \mathrm{E}$, rainforest, litter: 1 ㅇ, 12 Jan 1982, QM S32987; 1 ठ 1 ㅇ, 9 Nov 1975-27 Fcb 1976. G\& S. Monteith, QM S32983; allotype?, QM S31341; 1 d, 14 Jul 1981 or 1 Nov 1981 . R. Raven, V. Davies, QM S31342; 2 female. 17-31 Aug 1981. R. Raven. V. Davies, QM S32985. All in SE.Q. OTHER MATERIAL: QM S53413, QM S32986, QM S31343, QM S32988.
DIAGNOSIS. Males are easily recognised by the deeply grooved tibial apophysis and the filamentous brush paralleling the embolus; females are unusual in the large eircular lateral depressions in the epigyne.
DESCRIPTION. Holotype ©̇. Carapace 5.28 long, 3.76 wide. Abdomen 4.56, 3.12 wide.
Colour: Carapace orange brown with darker 'wedges' along striae, most evident posteriorly; hoary white hairs in band from PLE back to caput margin. Abdomen yellow brown speekled with 2 pair darker sigilla anteriorly, becoming darker brown posteriorly; ventrally yellow brown with black hair and pigmentation medial quadrangle flanked by $6-8$ small but distinet black irregular markings. Legs orange brown without darker
annulations; sternum, labium and all coxae yellow to orange brown.
Eyes: AME:ALE:PME:PLE, 12:12:12:14. Eye group front width: back width: length, 64:89:39. Interspaces: AME-AME, 0.8; AME-ALE, 0.6; PME-PLE, 1.6; PME-PME, 1.1. Centres of ALE cut back edge of AME. Front cdge of PLE along back edge of PME.
Chelicerae: $\mathrm{p}=2-3 ; \mathrm{r}=3$.
Spines: I: fe pvip2d3r4; parl; ti 3 d3r3pv5rv4; me p3r3v2.2.2. 11: fe pvlp3d3r4; pa rl; ti p2d3r3pv5rv4; me p3r3v2.2.2. 111: fe p3d3r5; pa r1; tip2d2r2v2.2.2; me p2r3v2.2. IV: fe p4d3r2; pa rl; ti p2d2r2v2.2.2; me p3r3v2.2.2. Palp: fe pld2rl.
Legs: scopula absent or at most very thin on tarsi 1, 11. Tibial crack 1-1V prolaterally distinct; dark \& grooved retrolaterally on 1, I1; not evident retrolaterally on III, IV. Trochanteral notehes shallow, deeper in back of notch to front.
Palp (Fig. 41A-C): patella incrassate with distinet prolateral mound. Tibia short with deeply intucked groove for length retrolaterally; rctrobasally with scooped process, retrodistally with tapering, slender spur. Cymbium squat, almost rectangular, deep; scopula dorsally for distal half; basodorsal process small, triangular. Paracymbial discontinuity abscnt. Tegulum wide, short; median apophysis a deep, broad, scooped hook with basal fold; leallike; hyaline process arising basally; median apophysis base large, extensive, dominates bulb. Distal to embolus a tapering process with feathery filaments for its distal length. Embolus arises beside median apophysis \& distal tegulum with bulbous origin quickly tapering to long slender tip; elongate triangular tapering subtegular tongue for basal half of embolus.
Allotype q : as for male except as follows.
Carapace: 5.92 long, 4.64 wide, Abdomen 8.48, 6.32 wide.

Colour: carapace like malc but darker arcas less distinct. Abdomen dorsally ycllow brown with slightly darker areas posteriorly forming scries of diamonds medially. Sternum orange brown, habium \& maxillae dark brown, coxae yellow brown. Abdomen ventrally yellow brown with irregular dark medial area. Legs red brown without annulations.
Chelicerae: 3p, 3 r.
Eyes: AME:ALE:PME:PLE, 11:14:13:15. Eye group front width: back width: length, 88:116:45. Interspaces: AME-AME, 1.5; AME-ALE, 1.3; PME-PLE, 2.3; PME-PME, 1.7. Ccntres of ALE

FIG. 39. Kilyana hendersoni, sp. nov., ㅇ. A, B, eephalothorax and abdomen, dorsal view; C, spinnerets, dorsal view showing PMS with biserial row of spigots dorsally; D, abdomen, ventral.
behind back edge of AME. Front edge of PLE is just behind back edge of PME.
Spines: 1: fe pulpId3r2: pa 0; ti pv5rv4; me v2.2.2. II: fe pvIp2d3r3; rest as I. III: fe p4d3r4; pa r1; ti p2d2r2v2.2.2; me p5r4v2.2.2. IV: fe p3d3rl; pa rl; ti p2d2r2v5; me p4r4v7. Palp: fe d3; parl; ti p2; ta p3d1r1.
Legs: scopula distinct on tarsi I-IV, distal but distinct on metatarsi I, II; absent elsewhere.

Claws: 3 long teeth on palp \& legs.
Epigyne (Fig. 42A-D,F): wide short, curled hoods laterally with broad medial mound and short transverse ridge.

DISTRIBUTION AND HABITAT. Rainforest

 around Brisbane and Mt Glorious.REMARKS. Material from Mt Archer is excluded from the type series because it includes only females and is at the most outlying point.

TABLE 15. Leg measurements of Kilyana hendersoni, holotype male and allotype female.

Male	1	11	111	IV	Palp
Femur	3.77	3.77	3.46	4.08	1.92
Patella	1.77	1.85	1.61	1.54	1.08
Tibia	3.85	3.23	2.46	3.23	0.92
Metatarsus	3.31	3.23	3.08	4.31	1.77
Tarsus	1.46	1.38	1.15	1.69	
Total	14.16	13.46	11.76	14.85	5.69
Female	1	11	111	$1 V$	Palp
Femur	3.23	3.38	3.00	3.92	1.77
Patella	2.07	1.92	1.61	1.77	1.00
Tibia	3.08	2.69	2.15	3.00	1.00
Metatarsus	2.69	2.46	2.54	4.15	1.31
Tarsus	0.92	1.08	0.85	1.31	
Total	11.99	11.53	10.15	14.15	5.08

FIG 40. Kilyana hendersoni, sp. nov., \&, tarsus 1, scanning electron micrographs. A, B, tip showing claw tufts and ventral scopuliform hairs, lateral (A) and axial (B) views; C, ridged sclerite below paired claws, axial view; D, ventral scopuliform hairs showing smoothly tapered tip.

Kilyana bicarinatus sp. nov. (Figs 35, 43, 44A-C: Table 16)

ETYMOLOGY. The specific epithet alludes to the median apophysis of the male.
MATERIAL. HOLOTYPE: ס̉, Bulburin SF, $24^{\circ} 30^{\prime}$ S $151^{\circ} 35^{\prime}$ E, SE.Q, $25-28$ Mar 1977, R. Raven. V. Davies, QM S32739. PARATYPES: allotype 9 , as for holotype but 17-24 Mar 1975, R. Kohout, V.E. Davics, QM S53562; 2 ठ $^{\circ}{ }^{\circ}$, same data but $24^{\circ} 31^{\circ} \mathrm{S} 151^{\circ} 29^{\circ} \mathrm{E}, 580 \mathrm{~m}, \mathrm{M}$. Gray, C. Horscman, AM KS6793. OTHER MATERIAL: 9 juv., as for holotype. QM S31458.

DIAGNOSIS. Males resemble those of Kilyana corbeni in the flared form of median apophysis but more angular and the tibia apophysis is simple open groove; females differ in that the epigyne is medially two ridges forming a vee-shape; males and females differ from those of the sympatric Birrana bulburin in lacking a tarsal rod.

DESCRIPTION. Holotype ò. Carapace 5.52 long, 4.24 wide. Abdomen $4.88,2.80$ wide.

FIG. 41. Kilyana hendersoni, sp. nov., of palp, scanning eleetron mierographs. A, eymbium and bulb, ventral view; B. embolus base with filamentous brush. prolateral view; C. tibia showing groove and basal process, ventral view: D, tarsus IV showing tarsal organ (arrow gives position, inset upper right) and trichobothrial cup (inset lower left); E, prolateral cheliceral face with thickened "fang setac" (inset).

Colour: freshly moulted; carapace orange brown with fine dark radiating lines on caput and thorax, narrow black margin of closed semicireles; large dark bands down chelicerae; abdomen dorsally (slightly damaged) yellow brown with larger longitudinal pallid areas anteriorly forming into fine transverse lines posteriorly; venter with narrow black medial V broken by two pallid stripes (inferred from juvenile). Legs with bands, slightly paler than carapace, mottled brown under femora. Sternum yellow brown with 3 pairs dark
spots opposite coxac 1-111; maxillae and labium orange brown with darker central areas.
Eyes: Front edge of PLE just behind back edge of PME. AME:ALE:PME:PLE, 6:6:8:8. Eyc group front width: back width: length, $36: 49: 51$. Interspaces: AME-AME, 1.2; AME-ALE, 1.0; PME-PLE, 1.7; PME-PME, 1.3.
Spines: I: fe pvlpld3r4; par1; ti p2d3r3pv5rv4; me p3r3v2.2.1. I1: fe pulp2d3r4; pa rl; ti p2d3r3pv5rv4; me p3r2v2.2.2.1. 111: fc p4d3r3; parl; tip2d2r2v2.2.2; mep1.2.2r1.1.2v2.2.2. IV:

FIG. 42. Kilvana hendersoni, sp. nov.. \uparrow. A, B, F, epigyne; C. vulva; D, leg I, prolateral view; E, spinnerets, axial view with PLS dorsal.
fe p 3 d 3 r 2 ; pa r1; ti p2d2r2v.2.2.2; me pl.1.1.2rI.2.2.2v2.2.2. Palp: fe pldI.2. Matt of hairs on dorsal femora.
Legs: scopula absent. Claws with 3-4 long, wide tceth almost eoncealed by tufts. Tibial crack I-IV prolateral, more distal on 1, 11 than III, IV. Trochanteral notches shallow, slightly asymmetrical, twice as wider as decp.
Palp (Fig. 43A-C): tibia short, no apophysis but retrodorsally with longitudinal keel and more cntally an asymmetrical shallow trough. Cymbium: roughly reetangular with wide
retrobasal edge and steep sides; prolateral paracymbial flange width forming retrodistal groove and shallow channel along basal fold; scopula dorsally for distal $1 / 3$. Tegulum reverse L-shape, narrow basally and laterally narrow; long triangular translucent pallid flat plate near but not enclosing embolus basally. Median apophysis a large triangular plate slightly upeurved prolaterally with sharply reflexed triangular process or retrodistal corner; distally with long deep groove, functionally a conductor. Embolus lies in groove formed by distal edge of

FIG. 43. Kilyana bicarinatus, sp. nov., ơ palp A-C. A, B, bulb and cymbium, ventral (A) and prolateral (B) view; C., retrolateral tibial apophysis, retrolateral view showing groove; D, epigyne; E, vulva.
median apophysis but reaching paracymbial flange.
Allotype ㅇ. Carapace 5.70 long, 4.31 widc. Abdomen 5.64 long, 1.06 wide.
Like Kilyana obrieni but: Colour: carapace dark orange brown with fine dark radiating lines on caput; chelicerae dark reddish brown; abdomen dorsally fawn with no pattern evident. Legs orange brown.
Eyes: lateral eyes on common tubercle; AME on distinct mound.

Legs: scopula on metatarsi I, II in 3 lines; dense, uniform for length of tarsi I-IV.
Spinnerets: retracted; PMS with spigots in dorsal band and apically.
Epigyne (Figs 43D.E, 44B,C): wider than long with outer edges each defincd by long concave ridge between which a broadly V-shaped pair of ridges converge posteriorly; vulva of two relatively large ducts overlying each other.

DISTRIBUTION AND HABITAT. Rainforest at Bulburin State Forest, SE Qld.

FIG. 44. Kilyana bicarinatus, sp. nov., ?, A-C. A, cephalothorax \& abdomen, dorsal view; B, epigyne; C, vulva. D, Kilyana kroombit, sp. nov., f, maxillae and labium, ventral view.

Kilyana campbelli, sp. nov.
(Figs 35, 45, 46F-G; Table 17)

TABLE 16. Leg measurements of Kilyana bicarinatus, holotype male.

	I	II	III	IV	Palp
Femur	2.08	1.96	1.84	2.12	1.12
Patella	1.04	1.00	0.84	0.96	0.50
Tibia	1.88	1.64	1.36	1.92	0.50
Metatarsus	1.72	1.32	1.56	2.40	-
Tarsus	0.80	0.60	0.60	0.92	1.00
Total	7.52	6.52	6.20	8.32	3.12

ETYMOLOGY. For Bruee Campbell, Deputy Director, Queensland Museum, 1964-1998.

MATERIAL. HOLOTYPE: δ°, Nimbin, $28^{\circ} 36^{\circ} \mathrm{S}$ $153^{\circ} 13^{\circ}$ E. NE NSW, rainforest, 14 Jun 1982, A.Rozefelds, D.Sinelair, QM S31406. PARATYPES: allotype 9 , Terania Ck, near Lismore. NE NSW, $28^{\circ} 34^{\circ} \mathrm{S}$ 153 ${ }^{\circ} 19^{\circ} \mathrm{E}$, 340 m , rainforest, April-May 1976, M. Gray, C. Horseman, AM KS 10090; 1 \& [2 juv.]. same data, AM KS 10090; 1 ठ', Red serub Flora Reserve, north of Lismore, NE NSW, $28^{\circ} 38^{\circ} \mathrm{S} 153^{\circ} 19^{\circ} \mathrm{E}$, I Apr 1976, M. Gray, C. Horseman, AM KS 9190.

FIG 45. Kilyana campbelli, sp. nov., oै palp, scanning electron micrographs. A, D, tibia and bulb, ventral (A) and retrolateral (D) view; B, E, tibia, retrolateral (B) and ventral (E) view.

DIAGNOSIS. Resembles K. kroombit in regular outline of the unsclerotised zone around the small median apophysis but the embolus lies transverse and the tibial apophysis is a flange not a longitudinal groove; females differ in that the epigyne is two distinct strongly procurved ridges posteriorly mueh like Birrana bulburin from which they differ in lacking a tarsal rod.
DESCRIPTION. Holotype む. Carapace 3.92 long, 2.96 wide. Abdomen $4.08,2.80$ wide.
Colour: carapace ycllow brown with finc radiating dark lines on caput, wider bands on edges and ectal edges, small dark triangle anterior to fovea. Abdomen fawn with darker
areas bounded by two fine palc lines and irregular pallid area anteriorly, dark area almost entirc on posterior medial abdomen; shadows ventrally on central abdomen. Legs not banded, pallid. Sternum with darkened radial pattern centrally.
Eyes: AME:ALE:PME:PLE, 8:9:9:12. Eye group front width: back width: length, $5 \mathrm{I}: 66: 32$. Interspaces: AME-AME, 1.0; AME-ALE, 0.7 ; PME-PLE, 1.3: PME-PME, 1.6. Front of ALE cut through back edge of AME. Front edge of PLE along back cdge of PME.
Spines: 1: fe pv1p1d3r4; pa rl; ti p2d2r3pv5rv4; me plrlv2.2.2. Il: fc, p2d3r4; pa rl; ti p2d2r3pv5rv4; me plrlv2.2.2. Ill: fc p4d3r4; pa

TABLE 17. Leg measurements of Kilyana campbelli, holotype male.

	1	11	111	1V	Palp
Femur	2.92	2.92	2.61	3.38	1.38
Patella	1.38	1.38	1.31	1.38	0.61
Tibia	3.00	2.69	1.85	2.69	0.77
Mctatarsus	2.92	2.61	2.46	3.61	1.46
Tarsus	1.00	1.08	1.00	1.46	
Total	11.22	10.68	9.23	12.52	4.22

rl; ti p2d2r2v2.2.2; me pl.2.2 r1.1.2v 2.2.2. 1V: fe p3d3rl; pa rl; ti p2d2r2v.2.2.2; me pl.1.1.2r2.2.2 v7. Palp: fe pldl.2; pa 0; ti p2.
Legs: scopula absent. Claws with 2 long and 1 short basal tooth. Tibial crack on I-IV prolaterally distinet, less so retrolaterally. Trochanteral notehes shallow, asymmetrical.
Palp (Fig. 45A-E): patella dorsal apex a sclerotised saddle at tibial juncture. Tibia across venter with low asymmetrical mound; tibia short, incrassate with large RTA twisted ventrally truncate to give concave edge; prodorsal and distally a broad concave trough runs diagonally to distal dorsal corner. Cymbial scopula dorsally for distal $1 / 8$. Cymbium almost rectangular, rounded edges with broad anterior fold and wide retrodistal groove. Prolateral paracymbial flange a distinet low triangle basally. Tegulum broad, ovoid, basally; with ovoid retrolateral window with retrolateral small claw-like median apophysis. Embolus widc, flat, in prodistal origin reflexes back slender and slightly to base near tip of median apophysis then reflexes dorsally to lie near distal cymbial groove.
Allotype of , like male exeept:
Spimerets: PMS dorsally with 2 lines each of 20-30 spigots.
Epigure (Fig. 46F,G): roughly ovoid defined with two broad U -shaped ridges converging centrally to form narrow septum which is overlaid by n -shaped ridge.
DISTRIBUTION AND HABITAT. Rainforest in the Nimbin arca of N NSW.

Kilyana corbeni sp. nov.
(Figs 35, 46A-E: Table 18)
ETYMology. For Chris Corben and his role in the diseovery of the gastric brooding habits of the frog Rheobatracus silus Liem, 1973.
MATERIAL. HOLOTYPE: ס̇, Booloumba Ck, Conondale Ra, $26^{\circ} 39^{\circ} \mathrm{S} 152^{\circ} 39^{\circ} \mathrm{E}$, SE.Q, rainforest, pitfall, 29 Nov 1974-22 Feb 1975, G \& S. Monteith, QM

S31396. PARATYPES: allotype $\xlongequal{\circ}$, Booloumba Ck, Conondale Ra (low), $26^{\circ} 39^{\circ} \mathrm{S} 152^{\circ} 39^{\circ} \mathrm{E}$, rainforest, pitfall, 29 Nov 1974-22 Feb 1975, G \& S. Monteith. QM S31397; 1 of, same data, QM S31398; 1 of 1 of, Conondale Ra, Sunday Ck, $26^{\circ} 43^{\circ} \mathrm{S} 152^{\circ} 34^{\circ} \mathrm{E}$, rainforest, intercept flight trap, 29 Nov 1991-7 Jan 1992, D.J. Cook. QM S25182, QM S25184. All in SE.Q.
DIAGNOSIS. Males differs from those of the sympatric K. ingrami in lacking the distal groove on the median apophysis, dorsal tibial spines about $1 / 2$ lateral (cf. equal) and tegulum has very long longitudinal component; females have the eopulatory groove clearly inverted U-shaped and only about twice as wide as long whereas in K. ingrami it is broadly recurved and about 3.5 times wider than long.
DESCRIPTION. Holotype む. Carapace 6.24 long, 4.96 wide. Abdomen 5.52, 3.76 wide.
Colonr: carapace yellow brown with broken dark arcas along margins, laterally PLE on caput edge, two bands up posterior slope and triangular arcas submarginally on interstriac, fovea red. Abdomen dorsally fawn with dark shoulders and small dark areas in posterior half, ventrally yellow brown with small dark areas. Femora yellow brown with broad ring at ends. tarsus yellow brown; rest reddish brown. Apical maxillac dark.
Eyes: AME:ALE:PME:PLE, 12:13:12:13. Eye group front width: back width: length, 79: 100:41. Interspaces: AME-AME, 1.I; AME-ALE, 0.9; PME-PLE, 2.2; PME-PME, 1.6. Front of ALE eut along back edge of AME. Front edge of PLE behind back edge of PME.
Spines: I: fe pvlpld3r4; parl; ti p2d3r3pv5rv4; me p2r2v2.2.2. II: fe pulp2d3r4; pa rl; ti p2d2r3v2.2.2.2.2; me p3r3v2.2.2. Ill: fe p4d3r4; parl: ti p2d2r2v2.2.2; me pl.2.2r2.1.2v 2.2.2. IV: fe p4d3rl; pa ri; ti p2d2r2 v.2.2.1; me p4r5v1.2.2.2. Palp: fe pld1.2.
Legs: scopula absent; light pile of ycllow brown hairs. Large pallid RCH. Tibial crack on I-IV distinct. Trochanteral notehes shallow, symmetrical.
Palp (Fig. 46A-C): patella short, not inerassate with broad selerotised ledge dorsodistally. Tibia: ridge joins basoventrally with low curved ridge and glabrous shallow area distally, retrolaterally with large basal process bearing large socketed truncate spine; retrodistally with narrow bluntly pointed process; mid-dorsally with bowed process bearing triangular large socketed spine much smaller than retrolateral. Cymbium apically widely folded truncate ovoid;

FIG 46. A-E, Kilyana corbeni, sp. nov., scanning clectron mierographs. A-C, ơ palp. A, B, cymbium and bulb, ventral (A) and prolateral (B) view with inset showing process beside median apophysis, retrolatcral view; C, tibia and cymbium, showing tibial apophysis, ventral view. D-E, of; D, cpigyne, E, vulva. F-G, Kilyana campbelli, sp. nov., seanning electron micrographs. 9 ; F, cpigyne, G, vulva.
retrolaterally with wide heavily sclerotised angular ridge distally joining with distal fold to make short deep groove; scopula dorsally for distal 1/4; paracymbial discontinuity a slight extension. Tegulum large, reverse C-shaped, but basal lobe more long than across basally. Mcdian apophysis is free of tegulum, a large open scoop
or spoon-shaped process apically twisted. Embolus arises probasally with subtegular shicld and tegulum; origin conical, reflexes in S -shape from short basal to prolateral and cmerging in long tapering tip in cymbial fold; as for all species prolateral cymbial edge with shicld of long curved setae (in right line) extending into cmbolus.

TABLE 18. Leg measurements of Kilyana corbeni, holotype male and allotype female.

Male	1	11	111	IV	Palp
Femur	4.23	4.31	3.92	4.69	2.15
Patella	2.00	2.15	1.85	1.85	1.00
Tibia	4.23	3.69	3.00	3.85	0.54
Metatarsus	4.00	3.69	3.46	4.61	2.31
Tarsus	1.54	1.38	1.31	1.69	
Total	16.00	15.22	13.54	16.69	6.00
Female	1	11	111	1 V	Palp
Femur	3.31	3.15	2.92	3.69	1.61
Patella	1.61	2.07	1.31	1.77	0.69
Tibia	2.85	2.69	2.00	3.08	0.85
Metatarsus	2.38	2.31	2.31	3.61	1.31
Tarsus	0.77	0.85	1.00	1.15	
Total	10.92	11.07	9.54	13.30	4.46

Allotype 8 , like male except: Carapace 5.36 long. 4.64 wide. Abdomen 8.80, 7.20 wide.
Chelicerae: $3 \mathrm{p}, 3 \mathrm{r}$.
Eyes: AME:ALE:PME:PLE, I2:12:14:I5. Eye group front width: back width: length, 80:106:44. Interspaces: AME-AME, 1.3; AME-ALE, I.2; PME-PLE, 2.0; PME-PME, 1.5.
Legs: scopula absent. Claws with 3 short teeth on palp \& legs.
Spines: I: fe pvipId3r2; pa 0; ti pv5rv4; me v2.2.2. II: as for I but fe pvlp2d3r3. III: fe p4d3r4; pa rI; ti p2d2r2v2.2.2; me pl.I.2r2.I.2v2.2.2. IV: fe p3d3rI; pa rl; ti p2d2r2v5; me pI.I.I.2r2.I.1.2 v7. Palp; fe dl.2; pa 0; ti p2dl; ta p3dlrl.
Epigyue (Fig. 46D,E): a broad recurved groove; vulva G-shaped.
Spinnerets: PMS each with two lines of spigots dorsally.
DISTRIBUTION AND HABITAT. Rainforest at Booloumba Ck, Conondalc Range, SE Qld, where it is sympatric with Kilyana ingrami.

Kilyana dougcooki sp. nov.
(Figs 35, 47; Table I9)

ETYMOLOGY. For Doug Cook.

MATERIAL. HOLOTYPE: ó, Upper Tallebudgera Valley, $28^{\circ} 15^{\prime} \mathrm{S} 153^{\circ} 16^{\circ} \mathrm{E}$, SE.Q, rainforest, Mar-Jul 1985, D.J. Cook. QM S31403. OTHER MATERIAL. QM S25073

DIAGNOSIS. Males differ from those of K. ingrami in pincer-like tibial apophysis and simple, longitudinal, hooked median apophysis.

TABLE 19. Leg measurements of Kilyana dougcooki, holotype male.

	1	11	111	1 V	Palp
Femur	3.46	3.61	3.31	3.92	1.77
Patella	1.77	1.69	1.61	1.46	0.85
Tibia	3.92	3.38	2.46	3.31	0.69
Metatarsus	3.61	3.08	3.08	3.69	1.54
Tarsus	1.38	1.23	1.15	1.54	
Total	14.14	12.99	11.61	13.92	4.85

DESCRIPTION. Holotype ©̊. Carapace 4.88 long, 3.60 wide. Abdomen $3.68,2.64$ wide.

Colour: carapace orange brown with dark hairs along strial edge. Legs without bands. Abdomen fawn brown, anteriorly pallid, postcrior central arca with irregular dark mottling; ventral abdomen pallid with dark areas. Sternum pallid with dark radial bands.
Eyes: AME:ALE:PME:PLE, 10:9:11:12. Eye group front width: back width: length, 60:83:35. Interspaces: AME-AME, 1.1; AME-ALE, 1.0; PME-PLE, I.7; PME-PME, 1.3. Front of ALE well back from back of AME. Front edge of PLE along back edge of PME.
Spines: I: fe pv1pId3r4: par1; ti p2d3r3pv5rv4; me p3r3v2.2.2. II: fe poIp3d3r4: pa rl; ti p3d3r3pv5rv4; me p3r3v2.2.2. III: fe p4d3r4; pa r1; ti p3d2r2v2.2.2; me p1.2.2r2.2v2.2.2. IV: fe p4d3r2; pa r1; ti p2d2r2v.2.2.2; me p1.1.2r2.2.2v7, unpaired. Palp: fe pldI.2.
Legs: scopula absent. Claws with 2-3 small teeth; tufts united. Tibial crack I-IV prolaterally distinct, weakly discernible retrolaterally on III, IV. Trochanteral notches shallow, asymmetrical.

Palp (Fig. 47A-E): Tibia: incrassate distally with raised ovoid diagonal mound retrodistally; mound with small conical reddish process turned distally toward large curved megaspine (socketed) with mounded base, midventrally with low rounded unsclerotised mound with glabrous area prolaterally. Cymbium: subovoid; retrobasally folded widely narrow distally to form shallow groove; margin wide prodistally; dorsal scopula for distal 2/5. Bulb: tegulum large, scoop-slaped on retrobasal corner; median apophysis small, roughly rectangular with small medial point and larger apical distal triangular tip; embolus originates on prolateral edge tapers quickly into smooth curving tip terminated near cymbial groove.

FIG. 47. Kilyana dougcooki, sp. nov. A-C, ò palp, seanning electron micrographs; A. eymbium and bulb, ventral view; B, tibial apophysis, retrolateral view; C, median apophysis, ventral view. D-E, ô palp; D, E, tibia, eymbium and bulb, ventral (D) and retrolateral (E) view. F-G \hat{f}; F, epigyne, G, vulva.

DISTRIBUTION AND HABITAT. Upper Tallebudgcra Valley and probably also Mt Tamborine, in rainforcst.

REMARKS. Because the female and male have not been taken at the same locality and the two localities (Mt Tamborine, Upper Tallebudgera Vallcy, respectively), the female is not designated a paratype but the epigyne is figured (Fig. 47F,G).

> Kilyana cungella, sp. nov.
> (Figs 35, 48 ; Tablc 20)

ETYMOLOGY. A noun in apposition taken from the type locality.
MATERIAL. HOLOTYPE: 9 , Broken R, Eungella NP, $21^{\circ} 11^{\circ} \mathrm{S} 148^{\circ} 31^{\circ} \mathrm{E}, \mathrm{MEQLD}$, rainforest, 4 Sep 1988, R.Raven, J.Gallon, T.Churehill, QM S13870. PARATYPES: 9, Pease's Lookout, Eungella NP, $21^{\circ} 07$ 'S $148^{\circ} 31^{\circ}$ E, rainforest, pitfall \& intercept traps, 17 Nov 92-mid Apr 93, GMonteith D.Cook, QM S31404; 1 i. Eungella (schoothouse), $21^{\circ} 08^{\prime} \mathrm{S} 148^{\circ} 29^{\prime} \mathrm{E}$, rainforest, pitfall. 11-14 Feb 1986, R.Raven, J.Gallon, QM S29310; 2 ㅇ, Mt William, Dalrymple Heights, $21^{\circ} 01^{\circ} \mathrm{S} 148^{\circ} 36^{\circ} \mathrm{E}$, 1120 m , rainforest. Apr 1975, M. Gray, C. Horseman, AM KS6565. All in MEQ. OTHER MATERIAL. AM KS6383.

DIAGNOSIS. The paired broadly procurved copulatory grooves in the female are unique in the genus.
DESCRIPTION. Holotype 오. Carapace 5.12 long, 4.00 wide. Abdomen 7.12, 5.36 widc.
Colour: carapace, legs and abdomen yellow brown. Carapace with darker radial pattern. Chclicerae without stripes. Abdomen fawn with slightly darker shoulders. Legs III, IV with distinct bands and mottling sternum with slightly darker radial lines.
Chelicerae: 3p, 3r, all large.
Eyes. AME:ALE:PME:PLE, 10:11:13:I2. Eyc group front width: back width: length, 73:103:36. Interspaces: AME-AME, 1.8; AME-ALE, 1.1; PME-PLE, 2.6; PME-PME, I.8. Front of ALE bchind back edge of AME. Front edge of PLE is just behind back cdge of PME.

TABLE 20. Leg measurements of Kilyana eungella, holotype female.

	1	11	$1 I I$	IV	Palp
Femur	2.77	2.61	2.54	3.15	1.38
Patella	1.00	1.54	1.38	1.38	0.69
Tibia	3.31	2.15	1.69	2.54	0.85
Metatarsus	2.23	2.07	2.07	3.31	1.15
Tarsus	0.85	0.85	0.61	1.15	
Total	10.16	9.22	8.29	11.53	4.07

Spines: I: fc pvIpld1; pa 0; ti pv5rv4; me v2.2.2. 11: as for I but fe pvlp2d3r3. 111: fe p3d3r2; pa 0; ti p 2 d 2 r 2 v 2.2 .2 : me pl.2.2r2.1.2v2.2.2. IV: fe p3d3rl; pa rl; ti p2d2r2v5; me p1.1.I.2r 2.2.2v2.2.3. Palp: fe dl.2; pa 0 ; ti plrl; ta p3dI. Legs: scopula very weak on metatarsi, tarsi I, II. Claws: 2-3 short on palp \& legs. Trochanteral notches very shallow.
Epigyue (Fig. 48A-D): a broad shallow ovoid plate with 2 distal smoothly curving groove leading to spiralled spermathecae.
Spinnerets: PMS each with a long dorsal ridge. Colulus a triangular plate.

DISTRIBUTION AND HABITAT. Rainforest on the Eungella Range, west of Mackay, mid E Qld.

REMARKS. As most of the material has 3 teeth retrolaterally on the chelicerac and only one has 4 teeth (QM S31340) but the cpigynes \& vulva of both are alike, the quadridentatc condition is considered an intraspecific variant. The vulva of QM S31304 are relatively slightly longer than the holotype (Fig. 48B).

Kilyana ingrami sp. nov.
(Figs 35, 49, 50; Table 21)
ETYMOLOGY. For Dr Glen Ingram.
MATERIAL. HOLOTYPE: δ, Conondale Ra, $26^{\circ} 45^{\prime}$ S 152³7’E. SE.Q. 1-3 May 1976, R.J. Raven, QM S31393. PARATYPES. δ°, Booloumba Ck. Conondale Ra, $26^{\circ} 39^{\prime} \mathrm{S}$ 152옹́E, rainforest, litter, 13-18 May 1976, R.J. Raven, QM S31395; Allotype ㅇ. Conondale Ra, $26^{\circ} 45^{\circ} \mathrm{S}$
 juv.], same data, QM S29345; 1 ठ̉, Little Yabba Ck, $26^{\circ} 37^{\prime} \mathrm{S} 152^{\circ} 41^{\prime} \mathrm{E}$, rainforest, pitfall, 10 Aug-9 Nov 1974, G\& S. Monteith, QM S31399; 5 \%, Mapleton Falls NP, $26^{\circ} 38^{\prime} \mathrm{S} 152^{\circ} 51^{\circ} \mathrm{E}$, rainforest, flight intercept trap, 8 Jan-3 Mar 1992, D.J. Cook, QM S39589: 1 ठै 1 \%, Tungi Ck, $26^{\circ} 40^{\circ} \mathrm{S} 152^{\circ} 28^{\prime} \mathrm{E}$, rainforest, pitfall. 10 Nov-29 Dec 1974. G\&S. Monteith, QM S31407: 1 年, same data but 18 Dec 1996-20 Jan 1997, G Monteith, QM S39093: I i. Cold Ck, SE. QLD, $26^{\circ} 28^{\circ} \mathrm{S} 152^{\circ} 41^{\circ} \mathrm{E}, 122 \mathrm{~m}$, 16 June-23 Aug 1975, GB. \& S.R. Monteith, QM S53411; 2 오. same data but 31 Dec 1974-27 Mar 1975, QM S 53410; ס, Amamoor Ck, $26^{\circ} 24^{\prime} \mathrm{S} 152^{\circ} 36^{\circ} \mathrm{E}, 120 \mathrm{~m}$, rainforest, pitfall trap, 24 Sep 2001-15 Jan 2002, GB. Monteith, QM S54301; 오, Dingo Ck, via Traveston, $26^{\circ} 20^{\circ} \mathrm{S} 151.52^{\circ} \mathrm{E}$, SE.Q, 9 Nov-3I Dec 1974, G\& S. Monteith, QM S54302. All in SE.Q. OTHER MATERIAL. QM S25200.

DIAGNOSIS. Males differ from those of Kilyana corbeni in having a distinct groove across the distal median apophysis of the palp; females differ in that the copulatory groove is broadly recurved and about 3.5 times wider than long

FIG. 48. Kilyana eungella, sp. nov., 9 : vulva, QMS 13870 (A), QMS31404 (B); epigyne QMS13870 (C), QMS3140 (D).
whereas in Kilyana corbeni it is clearly an inverted U and only about twice as wide as long.
DESCRIPTION. Holotype o . Carapacc 5.52 long, 3.76 wide. Abdomen 4.72, 3.44 wide.
Colour: carapace orange brown fine darker margins and along caput cdgc. Abdomen dorsally pallid with black rings at base of setac, darkness increases in back half. Legs not banded. Sternum with slightly darker areas opposite intercoxal corners; maxillae and labium anterior laterally dark. Abdomen ventrally is pallid with black transverse flecks.
Eyes: front edge of ALE along back cdge of AME. Front edge of PLE along back edgc of PME. ALE clcarly smallest. ALE \& PLE on common tubercle. AME:ALE:PME:PLE, 11:10:13:15. Eye group front width: back width: length, 63:87:40. Interspaces: AME-AME, 1.1; AME-ALE, 1.0; ALE-PLE, 0.0; PME-PLE, 1.6; PME-PME, 1.3.
Chelicerae: 3p, 3 r.
Spines: 1: fe pv1p1d3r4; pa r1; ti p2d3r3pv5rv4; me p5r4rv2.2.2. 1I: fe vlp2d4r4; pa rl; ti p 2 d 3 r 2 v 2.2 .2 .2 ; me p 5 r 4 v 2.2 .2 . III: fe p 4 d 4 r 3 ; pa r1; tip2d2r2v2.2.2; mepl.1.2r2.2.1v2.2.2. IV: fe p4d3r1; pa rl; ti p2d2r2v.2.2.2; me pl.1.1.2r2.2.2. Palp: fe pidl.2, pa 0 , tipl.

Legs: scopula absent. 1, Il laterigrade. Tibial crack on 1-IV grooved; 2-3 teeth on claws. Trochanteral notches shallow, (3-4 wider than deep) deeper in back of notch to front. Sctation on legs, sternum, maxillac and labium short, sparse. Palp (Fig. 49A-F): tibia stout, retrolaterally concave, glabrous with 4 processcs: basoventrally a rounded diagonal ridge, retrodistally a flattened hand-shaped process; two very large modified

TABLE 21. Leg measurements of Kilyana ingrami, holotype male and allotype female.

Male	1	11	111	$1 V$	Palp
Femur	3.77	3.85	3.46	3.85	1.92
Patella	1.92	1.85	1.61	1.69	0.85
Tibia	3.69	3.23	2.31	3.46	0.85
Mctatarsus	3.77	3.00	2.77	4.38	2.07
Tarsus	1.38	1.23	1.23	1.38	-
Total	14.53	13.16	11.38	14.76	5.69
Female	1	11	111	1 V	Palp
Femur	3.15	2.54	2.85	3.31	1.46
Patella	1.92	1.69	1.31	1.85	0.92
Tibia	2.77	2.38	1.69	2.77	0.92
Mctatarsus	2.54	2.31	2.23	3.85	1.23
Tarsus	0.92	1.00	0.92	1.23	-
Total	11.30	9.92	9.00	13.01	4.53

FIG. 49. Kilyana ingrami, sp. nov., ó palp. scanning clectron micrographs. A, C, cymbium and bulb, ventral (A) and prolateral (C) view; B, D, median apophysis, with distal groove (arrow), ventral vicw. E, F, of palpal tibia, ventral (E) and axial vicw looking to base (F).

FIG. 50. Kilyana ingrami, sp. nov., 7, A, B, D, epigyne, showing variability in transverse groove; C, vulva.
spines retrobasally, dorsal spine short conical, broad; retrolateral a wider spine but diagonally truncate to base giving concavc ovoid apex, dorsal surface convex: tibia excavate between megaspines and cymbium. Cymbium; scopula extent apical $1 / 3$; dorso-basally with very sclerotised collar: dorsally with large basal flattened area; apically folded to make broad tip and retrolateral groove apically. Tegulum large basal and retrolateral 'mirror C' shaped, subtegular shicld ariscs up beside cymbium on prodorsum. Embolus S-shaped, basally small, probasal with long rectangular flange, broken paraembolic process passes ventrally then reflexes forward arising near cymbial groove with flared tip. Median apoplysis large, sclerotised, triangular with two flanges on each side, all converge apically.
Allotype \bigcirc. As for male except as follows: Carapace 5.68 long, 3.92 wide. Abdomen 5.28, 3.76 wide.

Carapace: Markings on lateral cephalothorax darker; rings on distal femora-metatarsi; pilosity like male but hairs darker.

Chelicerae: 3p, 3 r .
Eyes: AME:ALE:PME:PLE, 10:11:12:16. Eye group front width: back width: length, 79:I04:43. Interspaces: AME-AME, 1.3; AME-ALE, 1.4; PME-PLE, 2.7; PME-PME, 1.8. Front cdges of ALE behind back cdge of AME. Front edge of PLE is bchind back cdgc of PME.
Spines: I: fe pvipld3r3; pa 0; ti pv5rv4; mc v2.2.2. II: as for I but fep3d3r3. III: fep4d3r4; pa r1; ti p2d2r2v2.2.2; me p1.2.2r.2.2.2v2.2.2. IV: fe p3d3rl; pa rl; ti p2d2r2v2.2.2; me pI.I.1.2r2.2.2v2.2.2. Palp: fe d1.2; pal; ti 2 d 1 ; ta p3r3.
Legs: scopula on tarsi I, 11; weak and weak in distal third of metatarsi I, II.
Epigyne (Fig. 50A-D): a broad excavate shieldshaped plate, centrally with wide inverted U-shaped ridge with recurved end; vulva G-shaped.

DISTRIBUTION AND HABITAT.Rainforcst in the Conondale Range, SE Qld.

> Kilyana kroombit sp. nov. (Figs 35, 44D, 51, 52; Table 22)

ETYMOLOGY. A noun in apposition, from the type locality.
MATERIAL. HOLOTYPE: 1 § , Kroombit Tops (Site 5), $24^{\circ} 25^{\prime} \mathrm{S} 151^{\circ} 03^{\prime} \mathrm{E}$, SE.Q, rainforest, pitfall, $10-18$ Dec 1983, GMoneith, V.Davies, J.Gallon, GThompson, QM S31401. PARATYPES. Allotype ? , as for holotype, QM S31402; 2 ㅇ, Kroombit Tops, Beauty Spot 98, $24^{\circ} 25^{\prime}$ S $151^{\circ} 03^{\circ}$ E, rainforest, 9-19 Dee 1983, V.Davies, J.Gallon, QM S32951; 2 o 1 ㅇ [[3 juv.], Kroombit Tops, $24^{\circ} 25^{\circ} \mathrm{S}$ $151^{\circ} 03^{\prime}$ E, pitfall, 23 Feb 1982, G. Monteith, R. Raven, D. Yeates, Q. S S 32784 . All in SE.Q. OTHER MATERIAL. 3 juveniles, as for QM S32784.

DIAGNOSIS. Males differ from those of Kilyana hendersoni in the much less extensive groove retrolaterally on the tibial apophysis, the less expansive median apophysis and the absence of the paraembolic fringe, from the sympatric K. obrient in the presence of a groove on the palpal tibia. Females have the most subtle epigynes of the genus; it is broad with at most a tiny medial inverted U-shaped aperture and very shallow latcral grooves.

DESCRIPTION. Holotype ô. Carapace 5.04 long, 3.92 wide. Abdomen 4.32, 3.20 wide.
Colonr: carapace and legs orange brown with finc dark bands anteriomedially, lateral of cyes and PLE, along caput edge and distally along interstrial ridges and radially from fovea. Two dark stripes down each chelicera. Abdomen fawn with 4 irregular darker areas in posterior half; ventral abdomen pallid with black flecks centrally. Lcgs yellow brown with dark mottling under femora. Distal metatarsi darker.
Eyes: AME:ALE:PME:PLE, 10:13:10:14. Eye group front width: back width: length, 64:86:38. Interspaccs: AME-AME, 1.0; AME-ALE, 1.0 ; PME-PLE, 1.8; PME-PME, 1.3.
Spines: 1: fe pvilpld3r4; pa rl; ti p3d3r3pv5rv4; me p3r3v2.2.2. II: fe pvlp3d3r4; parl; ti p2d3r3pv5rv4; me p3r3v2.2.2. 111: fc p4d3r4; pa r1; tip2d2r2v2.2,2; mc p1.2.2r2.1.2v2.2.2. IV: le p4d3r2; pa rl; ti p2d2r2v2.2.2; me p5r6v8. Palp: fe pldi.2.
Legs: scopula absent. Claws with 2-3 teeth. Tibial crack on I-IV distinct on both sides of tibia. Trochanteral notches shallow, deeper in back of notch to front, ea. $4 \times$ wider than deep. Tufts distinct, united.
Palp (Fig. 51A-D, 52D,E): patella slightly inerassate with distodorsal sclcrotised extension. Tibia with long, deep, diagonal groove across
retrolateral face and forming uniform mound basally; rounded ridge on dorsal side: apically on lower side a low conical process beside longer blade-like process sct or long retrodorsal ridge along tibia edgc. Opposing edge of eymbium basally rounded forming tubc with diagonal groove retrodorsally across eymbial corner; cymbial scopula dorsally for distal $1 / 2$; cymbium asymmetrically folded apically with broad folded margin proventrally: prolateral paracymbial flange long, strong contimues to tip to form groove. Tegulum large bowl-like on retrobasal corner. with ovoid window retrolaterally from which arises small slender hooks; median apophysis with basal transluscent flange orthogonally. Embolus originates prodistally, tapers quickly diagonal aeross to apical cymbial groove retrolaterally.
Allotype ${ }^{\circ}$. Carapace 5.92 long, 4.48 wide. Abdomen 5.76, 3.92 wide.
Colour: darker arcas more extensive on cephalothorax, triangular dark prefoveal area. Abdomen light brown dorsally with dark 'shoulders' median dark dome broken as it widens posteriorly as two dark bands with serics of 4 vagucly defined dark chevrons down back; ventrally pallid with large area of dark fleeking centrally. Sternum fawn with radiating dark linc, coxae and legs with scattered dark flecking darkest on distal femora and metatarsi. Chelicerae orange brown with 2 dark bands down each and converging distally.
Chelicerae: 3p, 3 r .
Eves: AME:ALE:PME:PLE, 12:12:13:14. Eye group front width: back width: length, 83:110:41.

TABLE 22. Leg measurements of Kilyana kroombit, holotype male and allotype female.

Malc	1	11	111	1 V	Palp
Femur	3.92	3.69	3.38	4.23	1.69
Patella	1.77	1.61	1.31	1.31	1.08
Tibia	4.23	3.23	2.54	3.61	0.77
Metatarsus	4.08	3.31	3.00	4.85	1.46
Tarsus	1.77	1.38	1.31	1.61	
Total	15.77	13.22	11.54	15.61	5.00
Female	1	11	111	1 V	Palp
Femur	3.61	3.61	3.00	4.00	1.54
Patella	1.85	2.00	1.69	1.77	1.00
Tibia	3.08	2.54	2.00	3.08	1.00
Metatarsus	3.00	2.61	2.61	3.92	1.38
Tarsus	1.00	1.08	1.00	1.31	
Total	12.54	11.84	10.30	14.08	4.92

FIG. 51. Kilyana kroombit, sp. nov., © palp, scanning electron micrographs. A, B, cymbium and bulb, ventral (A) and prolateral (B) view; C, tibia and cymbium and bulb (D), retrolateral view.

Interspaces: AME-AME, 1.3; AME-ALE, 1.2; PME-PLE, 2.3; PME-PME, 1.7.
Spines: 1: fc pvlp1d2r2; pa 0; ti pv5rv4; me v2.2.2. II: as for 1 but fe p2d3r3. III: fe p4d3r2; pa r1; ti p2d2r2v2.2.2. me p1.2.2r1.1.1.2v2.2.2. IV: fepld3rl:parl;tip2d2r2v5; mepl.1.1.2r1.1.1.2 v1.2.2.2. Palp: fe d1.2; pa 0; ti p2d1; ta p3d1.
Epigyne (Fig. 52A-C): a very wide flat plate with pair of parallel grooves anteriorly, and low mound medially, a subdistal median cone; vulva signoidal, very small.

DISTRIBUTION AND HABITAT. Rainforest and adjacent open forest at Kroombit Tops, SE QId.

Kilyana lorne, sp. nov. (Figs 35, 53; Table 23)

ETYMOLOGY. Noun in apposition with the type locality.
MATERIAL. HOLOTYPE: δ^{\star}, Lome SF, nr Lome, sitc 86(4), NSW, $31^{\circ} 35^{\prime} \mathrm{S} 152^{\circ} 57^{\circ} \mathrm{E}$, D. Milledge, 11 Apr 1979. AM KS5662. PARATYPE. ठठ, same data but site 86(3), AM KS5384.

FIG. 52. Kilyana kroombit, sp. nov. A-C, of; A,C, epigyne, B, vulva. D-E, ठ’ palpal tibia, cymbium \& bulb ventral (D) and retrolateral (E) views.

DIAGNOSIS. Males rescmble those of Kilyana hendersoni in the grooved form of the tibial apoplyysis but differ in the distal spinose kecl (Fig. 53D,E).

DESCRIPTION. Holotypc ơ. Carapace 6.06 long, 4.63 wide. Abdomen 6.56 long, 3.95 wide.
Colour: carapace red brown with radiating black lincs along striac and thicker irregular band submarginally. Abdomen dorsally fawn with brown dorsal sigilla posteriorly with dark crescent; anterior scutc weak; venter pallid without pattern exccpt around genital area. Legs dark orange brown.

Carapace: strong bristles of long off-white hairs overhang latcral eyes, fewer such hairs between PME. AME on conical mound.

TABLE 23. Leg measurements of Kilyana lorne sp. nov. holotype male.

	1	11	111	1 V	Palp
Femur	4.50	4.38	4.13	5.06	2.44
Patella	2.31	2.19	2.00	2.13	1.38
Tibia	4.81	4.19	3.06	4.00	1.13
Metatarsus	4.44	4.00	3.56	5.31	-
Tarsus	1.63	1.44	1.69	1.69	1.88
Total	17.69	16.20	14.06	18.19	6.83

FIG. 53. Kilyana lorne, sp. nov., ô palp, scanning electron micrographs. A, B, cymbium and bulb, ventral (A) and prolateral (B) view; C, patella, libia and cymbium, showing small tibia, ventral view; D, E, tibial apophysis, retrolateral view.

Chelicerae: $2 \mathrm{p}, 3 \mathrm{r}$.

Spines: 1: fe pv1p1d3r5; pa r1; ti p2d3r3pv5rv4; me p3r3v2.2.2. II: as I but fe, pvlp3d3r4; parl. III: fe p4d3r4; pa rl; ti p2d2r2v2.2.2; me p1.2.2r1.1.1.2v2.2.2. IV: as 111 but fe p4d3rl: me p1.1.1.2r1.2.2v2.2.2. Palp: fepld1.1.2; pa0; ti pl. Legs: seopula weak but distinct on all tarsi; weak, of long hairs for length of metatarsi I, II, distal on III, absent on IV.
Palp (Fig. 53A-E): tibia retrolaterally with long groove (like Kilyana hendersoni) converging basally into eonieal mound, distodorsally above groove a small backwardly direeted digitiform process; distal edge of groove forms conieal proeess opposing broad, ovoid, shallow saddle
on retrodorsal basal eymbium; the process distally with a distal ridge of spine-like bristles, most ventral basally sinuous (Fig. 53E). Tegulum C-shaped; tongue-like subtegular groove opposed tegulum with embolus originating prolaterobasally and lying transversely. Junction of tegulum and median apophysis unsclerotised with C-shaped distal tegular extension partially encireling ehelate or apieally bipartite median apoplysis.

Female: unknown.
DISTRIBUTION AND HABITAT. Lorne State Forest, NSW.

FIG. 54. Kilyana obrieni, sp. nov., ơ palp, seanning electron micrographs. A, B, cymbium and bulb, ventral (A) and prolateral (B) view; C, patella, tibia and cymbium, showing small tibia, ventral view; D-F, tibial apophysis, retrolateral (D), ventral (E), dorsal (F) views.

Kilyana obrieni sp. nov. (Figs 35, 54, 55; Table 24)

ETYMOLOGY. For the late Graham O'Brien, Director Administrative Services, Queensland Muscum, 19861997.

MATERIAL. HOLOTYPE: ठ, QMS58264, Kroombit Tops, SE.Q, $24^{\circ} 22^{\circ}$ S $152^{\circ} 01^{\circ}$ E, R. Raven, G. Monteith, 28 Feb 1982. PARATYPE: allotype $\%$ QMS 58264, as for holotype.

DIAGNOSIS. Males are easily separated from the sympatric Kilyana kroombit by the very sculptured and complex median apophysis and females differ in the simple S-shaped spermathecae.

DESCRIPTION. Holotype ठ̊. Carapace 7.50 long, 5.45 wide. Abdomen 7.20 long, 4.89 wide.

Colour: Carapace dark orange brown with dark radiating lines; darker around eyes; dark bands down chelicerae; abdomen dorsally light greenish brown; no scute evident anteriorly; anterior medially pallid with 2 irregular darker stripes and pallid zone through to anterior pair of dorsal sigilla; venter like female

Chelicerae: $3 \mathrm{p}, 3 \mathrm{r}$.
Spines: I: fe pv1pld3r3; parl; ti p3d3r3pv5rv4; me p3r3v2.2.2. II: as I but fe pvlp3d3r3; pa rl. 11I: fe p3d3r3; pa r1; ti p2d2r2v2.2.2; me p1.2.2rl.1.2v2.2.2. IV: as IIl but fc p3d3rl; me pl.1.1.2r1.1.1.2v2.2.2.2.2. Palp: fe pld1.2.
Legs: scopula absent; claws with 3-4 long teeth; tibiae to tarsi I, II with very long curved hairs laterally.

FIG 55. Kilyana obrieni, sp. nov., \&. A, cephalothorax \& abdomen, dorsal view; B. epigyne; C, vulva; D, abdomen, ventral view.

Palp (Fig. 54A-F): tibia with low rounded dorsolateral tibial apophysis, tibia roughly barrel-shaped with distoventral deep concavity for distal third and bounded by two roughly triangular ventral processes. Cymbium: rounded rectangular, apically asymmetrical with extensive hirsute apical fold in prodistal corner and large flat retroventral flange basally; scopula dorsally for distal $1 / 3$. Tegulum large, basally with two unsclerotised lamellac: one large
prolateral and one slender retrolaterally that flanks large free complex median apophysis which is a large heavily sclerotised with transverse wide kecls, two distal prongs and onc subdistal and distodorsally with roughly ovoid scoop. Embolus with basodorsal 'thumb' originates distal of tegulum prolatcrally quickly flatens then becomes filiform and lies in groove formed by distal edge of median apophysis but reaching paracymbial flange.

TABLE 24. Leg measurements of Kilyana obrieni sp. nov. holotype male and allotype female.

Male	1	11	111	1 V	Palp
Femur	6.31	5.63	4.94	5.94	2.88
Patella	2.56	2.75	2.25	2.31	1.13
Tibia	6.75	5.00	3.56	4.75	1.25
Metatarsus	7.31	5.00	4.19	6.63	
Tarsus	2.56	1.69	1.94	1.94	2.31
Total	25.49	20.07	16.44	21.57	7.57
Female	1	11	111	1 V	Palp
Femur	5.44	5.38	5.00	5.94	2.56
Patella	3.13	3.00	2.56	2.69	1.56
Tibia	4.75	3.44	3.19	4.56	1.63
Metatarsus	4.38	3.13	5.56	5.69	
Tarsus	1.38	1.25	1.50	1.50	2.13
Total	19.08	16.20	17.50	20.38	7.88

Allotype \&. Carapace 8.16 long, 7.64 wide. Abdomen 9.39 long, 6.20 wide.
Colour: carapace dark orange brown with dark radiating lines on caput and thorax which break up into reticulate areas laterally; large dark bands down chelicerae; abdomen dorsally dark brown with pallid ostiate region flanked by 4 sigilla posteriorly with black crescents; venter mostly pallid yellow brown with medial zone forming three irregular broken longitudinal bands flanked by paler lines. Legs orange brown.
Eyes: lateral cycs on common tubercle; AME on distinct mound.
Chelicerae: p2, 3r.
Legs: scopula on metatarsi I, II distinct, denser distally but for length; dense, uniform for length of tarsi I, II; few scopuliform hairs on distal lateral metatarsi 111.
Spines: 1: fe pvlpld3r2; pa 0; ti pu5rv4; me v2.2.2. 11: as for 1 but fe p4d3r3. I1I: fe p4d3r3; pa rI; ti p2d2r2v2.2.2; mep1.2.2r2.1.2v2.2.2. IV: as III but fe p 4 d 3 rl ; me pl.1.1.2r1.2.2v2.2.2. Palp: fe d1.2; pa d1.2; ti p2d1; ta p2.lr2.
Claws: 2 long and one basal shorter tooth on paired claws; palpal claw with 6 long tecth.
Spinnerets: retracted; PMS with spigots in dorsal band and 2 apically.
Epigyne (Fig. 55B,C): externally a wide procurved distal ridge with short median scptum; internally spermathecae form strongly folded S.

DISTRIBUTION AND HABITAT. Open forest at Kroombit Tops; it occurs with K. kroombit.

ACKNOWLEDGEMENTS

We thank Australian Biological Resources Study for grant support and Charles Griswold, Norman Platnick, Mark Harvey, and Barbara Bachr for comments on the manuscript and access to her collection. Access to the collections of Natural History Museum, London; Musée National d'Histoirc Naturelle, Paris; Naturhistorisches Museum, Wien, Natal Museum, Otago Museum, Western Australian Museum; South Australian Museum; Australian Museum was kindly provided by P. Hillyard, C. Rollard and the latc J. Heurtault, J. Gruber, M. Bartholomew, South Africa, the late Ray Forster, Mark Harvey, David Hirst and Michael Gray, respectively. Valerie Davies commented on the manuscript and the project. Wendy Hebron provided assistance and collection management support. Helen Stark illustrated Figures I1A,D, I8, 25, 39E; Barbara Baehr illustrated Figures 8A, 24A, 28C and 32E,F. Photomicrographs were made with a Nikon Coolpix 880 provided by Japanese Dcpt of Health. For all of that, we are most grateful.

LITERATURE CITED

BAEHR, B. 2003. Revision of the tropical genus Tropasteron gen. nov. of North Queensland: a new genus of the Asteron-complcx. Memoirs of the Queensland Muscum 49: 29-64.
BERTKAU, P. 1882. Ueber das Cribellum und Calamistrum. Arehiv fur Naturgesehiehte 48: 316-362.
BOSSELAERS. J. 2002. A eladistic analysis of Zoropsidae (Araneae), with the deseription of a new genus. Belgian Journal of Zoology 132: 141-154.
CODDINGTON. J. \& LEVI, H.W. 1991. Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematies 22:565-592.
DALLWITZ, M.J., PAINE, T.A. \& ZURCHER, E.J. 1998. Interaetive keys. Pp. 201-212. In Bridge, P., Jeffries, P., Morse, D.R. \& Scott,P.R. (eds) Information teehnology, plant pathology and biodiversity. (CAB International: Wallingford.)
DAVIES, V. 1976. Spiders in fauna of eastern Australian rainforest: preliminary report on sites surveyed by the Queensland Museum in mid-eastern and north-eastern Queensland (Queensland Museum, Brisbane).
1977. Spiders in Fauna of eastern Australian rainforests II. (Queensland Museum: Brisbane).
1986a. New Australian speeies of Otira Forster \& Wilton, 1973 and Storenosoma Hogg, 1900 (Araneae, Amaurobiidae). Memoirs of the Queensland Museum 22: 237-251.
1986b. Australian Spiders (Araneac). Colleetion, preservation and identifieation. Queensland Museum Booklet 14: 1-60.

DIPPENAAR-SCHOEMAN, A. \& R. JOCQUė 1997. African Spiders. An identifieation manual. Plant Protection Research Institute Handbook no. 9: Agrieultural Rescarch Couneil, South Afriea.
FANG K., YANG, C., LUE, B., CHEN, S. \& LUE, K. 2000. Phylogenetic corroboration of Superfamily Lycosoidae [sie.] spiders (Araneae) as inferred from partial Mitochondrial 12 S and 16 S Ribosomal DNA sequenees. Zoological Studies 39: 107-113.
GOLOBOFF, P.A. 1997. NONA version 2.0, software. (Entomology Department. American Museum of Natural History: New York).
GRAY. M. R. \& THOMPSON, J. 2001. New lyeosoid spiders from southem Australia and North West Cape Peninsula (Arancae; Lyeosoidea). Reeords of the Western Australian Museum Supplementary Series 64: 159-170.
GRISWOLD. C.E. 1990. A revision and phylogenetie analysis of the spider subfamily Phylexidinae (Araneae, Amaurobiidae). Bulletin of the Ameriean Museum of Natural History 196: 1-200.
1991. A revision and phylogenetie analysis of the spider genus Machatonia (Araneae, Lyeosoidea). Entomologia Seandanavica 22: 305-351.
1993. Investigations into the phylogeny of the lyeosoid spiders and their kin (Arachnida, Araneae, Lyeosoidea). Smithsonian Contributions to Zoology 539: 1-39.
1994. A revision and phylogenetie analysis of the spider genus Phanotea Simon (Araneac, Lyeosoidea). Annales Scienees Zoologique 273: 3-63.
2002. A revision of the Afriean spider genus Raecius Simon, 1892 (Araneac, Zoroeratidac). Proeeedings of the California Aeademy of Seienees 53: 117-149.
GRISWOLD, C.E., CODDINGTON, J.A., PLATNICK. N.I. \& FORSTER, R.R. 1999. Towards a phylogeny of entelegyne spiders (Araneae, Araneomorphae, Entelegynac). Journal of Araehnology 27: 53-63.
GR1SWOLD, C. E. \& UBICK, D. 2001. Zoropsidae: a spider family newly introdueed to the USA (Araneae, Entelcgynae, Lyeosoidea). Journal of Araehnology 29: 111-113.
HARVEY, M.S. 1995. The systematies of the spider family Niendamidae (Araneac: Amaurobioidea). Invertebrate Taxonomy 9: 279-386.
LEHTINEN, P.T. 1967. Classifieation of the Cribellate spiders and some allied families, with notes on the evolution of the suborder Araneomorpha. Annales Zoologiei Fenniei 4: 199-467.
LEHTINEN, P.T. \& HIPPA, H. 1979. Spiders of the Oriental-Australian region 1. Lyeosidae: Venoniinac and Zoieinae. Annales Zoologici Fenniei 16: 1-22.
LEVY, G 1990. On the eribellate spider Zoropsis lutea in Isracl (Araneae, Zoropsidac). Bulletin of the British Arachnologieal Society 8: 139-143.
2003. Spiders of the familics Anyphaenidae, Hahniidae, Ctenidae, Zoridae, and Hersiliidae
(Araneae) from Israel. Israel Journal of Zoology 49: 1-31.
MARPLES, B.J. 1968. The hypochiloid spiders. Proecedings of the Linnean Society London 179, 11-31.
MILLOT, J. 1933. Notes eomplémentaires sur l'anatomie des liphistiides et des hypoehilides, à propos d’un travail réeent de A. Petrunkeviteh. Bulletin de la Société zoologique de Franee 56, 217-25.
1936. Métamérisation et museulature abdominate elhez les aranéomorphes. Bulletin de la Société zoologique de France 61. 181-204.
NIXON, K.C. 2002. Winelada, software. (Author)
PAGE. R.D.M. 2001. Nexus Data Editor, software. (Author)
PLATNICK, N.I. 1999. A revision of the Appalaehian spider genus Liocranoides (Araneae: Tengellidae). Ameriean Muscum Novitates 3285: 1-13.
2000. A relimitation and revision of the Australasian ground spider family Lamponidae (Arancac: Gnaphosoidea). Bulletin of the Ameriean Muscum of Natural History 245: 1-330.
2004. Catalog of spiders of the world, version 4.5 . http:/researeh.amnh.org/entomology/spiders/ eatalog81-87/index.html.
RAVEN, R.J. 1986. A eladistie reassessment of Mygalomorph spider families (Araneac). Pp. 223227. In, Eberhard, W.G, Lubin. Y.D. \& Robinson, B.C. (eds) Proecedings of the Ninth International Congress of Araehnology, Panama, 1983. (Smithsonian Institution Press: Washington D.C.).
1994. Mygalomorph spiders of the Barychelidae in Australia and the Western Paeifie. Memoirs of the Queensland Muscum 35(2): 291-706.
RAVEN, R.J., BAEHR, B.C. \& HARVEY, M.S. 2002. An interaetive key to Australian spider Subfamilies. (Australian Biologieal Resourees Study, CSIRO Publishing: Melbourne).
RAVEN. R.J. \& STUMKAT, K. 2003. Problem solving in the spider families Miturgidae, Ctenidae and Pscehridae (Araneae) in Australia and New Zealand. Journal of Araehnology 31: 105-121.
RAVEN, R.J., STUMKAT, K. \& GRAY, M.R. 2001. Revisions of Australian ground-hunting spiders: 1. Amatropelma gen. nov. (Arancomorphae: Ctenidae). Reeords of the Western Australian Muscum Supplementary series 64: 187-227.
SILVA, D. 2003. Higher-level relationships of the spider family Ctenidae (Arancac: Ctenoidea). Bulletin of the American Museum of Natural History 274: 1-86.
SIMON, E. 1892. Histoire naturclle des araignčes. Paris 1: 1-256.
1897. Histoire naturelle des araignées. Paris, 2: 1-192.
SUHM. M.. THALER. K. \& ALBERTI, G 1996. Glands in the male palpal organ and the origin of the mating plug in Amaurobius species (Araneac: Amaurobiidae). Zoologisehe Anzeiger 234: 191-199.
WILKINSON, M. 1992. Ordered versus unordered charaeters. Cladisties 8: 375-385.

APPENDIX 1: Data Matrix

xread

'Zoropsidae_last_via_DELTA 11:57 06-AUG-03'

6644
Tengella
Psechrus
Fecenia
Udubada
Uduba 3
Zorocrates
Devendra seriatum
Devendra pardale
Campostichomma
Raecius
Zorodictyna
Takeoa
Acanthoctenus
Zoropsis France
Zoroposis Canary I
Kilyana hendersoni
Birrana bulburin
Krukt piligyna
Megateg elegans
Huntia deepensis Uliodon NZ
Amauropelma truel. Machadonia robustus Machadonia urbense Phanotea pering Phanotea spX Phanotea spA
Senoculus Mituliodon tarantul. Dolomedes
Pisaura
Trechalea
Rhoicinus
Lycosa
Sosippus
Phoneutria
Ctenus
Stiphidion
Tapinillus
Australian tengel. Bengalla spV Miturga Diaprograpta
Argoctenus Q4
ccode - 0.65 ;
proc / ;
$0000000000000 ? 000000000 ? 0000 ? 0001021000000000000010000010000000000$ $00001000001 ? ? ? ? ? ? 000000 ? 0100 ? 1 ? ? ? 001000000011110000000010000000001$ $0000000010000 ? 000001000 ? 0100 ? 000000100000001111000 ? ? 00010000 ? ? 0001$ 111?001011000?2?11000110111??????202120000?0000011?0?1011100??0101 111?001011000?2? 11000110111??????202120000?000001120?1011000??0101 $001 ? 000010000 ? 00000100100100 ? 02 ? ? 000021000 ? 00000110011021001 ? ? 0 ? 00$ 101?0010000010??0000000?000201???000000100??000010?001011000??0?20 101?0010000010??0000000?000200001000000100??00001020?1011000??0?20 10110010100010??000000100100?01??202120100??0000102011011001??0120 111?0010000010??0001000?0000?0000000000000??00001100?1011101??0102 110?001100000?000000100?000200000001000000?000001110?1011201??0?01 011?000000000?000000100?0200?02??000011100?1001?1100?0?51000??0?01 01000000000010??0000000?0100?1???000100110010010110010151200??0100 $1111000000000 ? 010000100 ? 0301 ? 0010000000100210011111010151100000101$ $1111000000000 ? 010000100 ? 0001 ? 001000000010021001111 ? 010151100000101$ $1111000001000 ? 0100000110011 ? ? ? ? ? ? 000000100210011110011121201000111$ $1111000001000 ? 010001100 ? 011 ? ? ? ? ? ? 002000100210011113011121201000111$ $1111000101000 ? 010000100 ? 0101 ? 0001002000100210011113011121201000111$ $1111000001000 ? 010001100 ? 0401 ? 1 ? ? ? 002000100210011113011121201000111$ $11110001000011 ? ? 0000010 ? 0000 ? 02 ? ? 002000100210001111010111001000111$ $01110000001 ? ? ? ? ? ? 000100 ? 0000 ? 02 ? ? 002000100200001110011111000000111$ $00000000000110 ? ? 1000000 ? 0002101 ? ? 002000110110010100011111001000020$ 100?0000000011??0000000?000201???131000100?10000111011021100000120 $11010000000011 ? ? 0000000 ? 000200000131000100 ? 1000011 ? 011021100000120$ $11100000100011 ? ? 0000000 ? 020200010020000000220000111010011000000 ? 20$ $11100000000111 ? ? 0000000 ? 0202100100200000002 ? 0000110011011000 ? ? 0 ? 20$ $11100000000111 ? ? 0000000 ? 0302100100200000002 ? 000011 ? ? 11011000 ? ? 0 ? 20$ 000?000010000?000000000?011??????101000110110000100100111010001021 $0000000010000 ? 00000001110100 ? 1 ? ? ? 000020100010010111001000000000020$ 0000000010000 ?00001001101100?1???100021100010000010100010111101020 $0000000010000 ? 00001101101100 ? 1 ? ? ? 010001100010000000100010210101020$ $0000010011000 ? 1 ? 021001101100 ? 01 ? ? 000010100010000000101050200010020$ $0000110010000 ? 1 ? 02100110110221 ? ? ? 000010100010000000100010001010020$ $0000100010000 ? 2 ? 121001101100 ? 01 ? ? 020010101010000010100000001010020$ $0000100010000 ? 2 ? 121001111100 ? 01 ? ? 020010101010000010101000000010020$ $00000000000011 ? ? 0000000 ? 0002001 ? ? 021000110110010110001131200000020$ $00000001000011 ? ? 0001000 ? 0202001 ? ? 021010111110010110001131200 ? ? 0020$ $00000010101 ? ? ? ? ? ? 000000$?0100?1???201000100000100000100000000001001 0000000010000 ? 000000000 ?011?????? 001000000010100000100000210001021 $0000001000000 ? 000000000 ? 0002001 ? ? 002000100000000000011141101000120$ $0010001000000 ? 2 ? 00000111010201 ? ? ? 002000100000000101011131001000020$ $0000000010000 ? 11120100110101 ? 1 ? ? ? 002000000010000110001000000000020$ 000000010000 ? 11000001100100 ?1???002000100010010110001000000000020 $0000000010000 ? 00000000110100 ? 1 ? ? ? 000000110110010110001000200000020$;

